A339645
Triangle read by rows: T(n,k) is the number of inequivalent colorings of lone-child-avoiding rooted trees with n colored leaves using exactly k colors.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 5, 17, 12, 5, 12, 73, 95, 44, 12, 33, 369, 721, 512, 168, 33, 90, 1795, 5487, 5480, 2556, 625, 90, 261, 9192, 41945, 58990, 36711, 12306, 2342, 261, 766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766, 2312, 249164, 2483192, 6593103, 7141755, 3965673, 1283624, 258887, 32313, 2312
Offset: 1
Triangle begins:
1;
1, 1;
2, 3, 2;
5, 17, 12, 5;
12, 73, 95, 44, 12;
33, 369, 721, 512, 168, 33;
90, 1795, 5487, 5480, 2556, 625, 90;
261, 9192, 41945, 58990, 36711, 12306, 2342, 261;
766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766;
...
From _Gus Wiseman_, Jan 02 2021: (Start)
Non-isomorphic representatives of the 39 = 5 + 17 + 12 + 5 trees with four colored leaves:
(1111) (1112) (1123) (1234)
(1(111)) (1122) (1(123)) (1(234))
(11(11)) (1(112)) (11(23)) (12(34))
((11)(11)) (11(12)) (12(13)) ((12)(34))
(1(1(11))) (1(122)) (2(113)) (1(2(34)))
(11(22)) (23(11))
(12(11)) ((11)(23))
(12(12)) (1(1(23)))
(2(111)) ((12)(13))
((11)(12)) (1(2(13)))
(1(1(12))) (2(1(13)))
((11)(22)) (2(3(11)))
(1(1(22)))
(1(2(11)))
((12)(12))
(1(2(12)))
(2(1(11)))
(End)
The case with only one color is
A000669.
A000311 counts singleton-reduced phylogenetic trees.
A001678 counts unlabeled lone-child-avoiding rooted trees.
A005804 counts phylogenetic rooted trees with n labels.
A060356 counts labeled lone-child-avoiding rooted trees.
A141268 counts lone-child-avoiding rooted trees with leaves summing to n.
A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees.
A316651 counts lone-child-avoiding rooted trees with normal leaves.
A316652 counts lone-child-avoiding rooted trees with strongly normal leaves.
A330465 counts inequivalent leaf-colorings of phylogenetic rooted trees.
-
\\ See link above for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)}
{my(A=InequivalentColoringsTriangle(cycleIndexSeries(10))); for(n=1, #A~, print(A[n,1..n]))}
A316651
Number of series-reduced rooted trees with n leaves spanning an initial interval of positive integers.
Original entry on oeis.org
1, 2, 12, 112, 1444, 24086, 492284, 11910790, 332827136, 10546558146, 373661603588, 14636326974270, 628032444609396, 29296137817622902, 1476092246351259964, 79889766016415899270, 4622371378514020301740, 284719443038735430679268, 18601385258191195218790756
Offset: 1
The a(3) = 12 trees:
(1(11)), (111),
(1(12)), (2(11)), (112),
(1(22)), (2(12)), (122),
(1(23)), (2(13)), (3(12)), (123).
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
a:= n-> add(add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1), k=1..n):
seq(a(n), n=1..20); # Alois P. Heinz, Sep 18 2018
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}]
(* Second program: *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
Sum[Binomial[A[i, k] + j - 1, j] b[n - i*j, i - 1, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]];
a[n_] := Sum[Sum[A[n, k-j]*(-1)^j*Binomial[k, j], {j, 0, k-1}], {k, 1, n}];
Array[a, 20] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
-
\\ here R(n,k) is A000669, A050381, A220823, ...
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v,[0]))[n])); v}
seq(n)={sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018
A319254
Array read by antidiagonals: T(n,k) is the number of series-reduced rooted trees with n leaves of k colors.
Original entry on oeis.org
1, 2, 1, 3, 3, 2, 4, 6, 10, 5, 5, 10, 28, 40, 12, 6, 15, 60, 156, 170, 33, 7, 21, 110, 430, 948, 785, 90, 8, 28, 182, 965, 3396, 6206, 3770, 261, 9, 36, 280, 1890, 9376, 28818, 42504, 18805, 766, 10, 45, 408, 3360, 21798, 97775, 256172, 301548, 96180, 2312
Offset: 1
Array begins:
==================================================================
n\k| 1 2 3 4 5 6 7
---+--------------------------------------------------------------
1 | 1 2 3 4 5 6 7 ...
2 | 1 3 6 10 15 21 28 ...
3 | 2 10 28 60 110 182 280 ...
4 | 5 40 156 430 965 1890 3360 ...
5 | 12 170 948 3396 9376 21798 44856 ...
6 | 33 785 6206 28818 97775 269675 642124 ...
7 | 90 3770 42504 256172 1068450 3496326 9632960 ...
8 | 261 18805 301548 2357138 12081605 46897359 149491104 ...
9 | 766 96180 2195100 22253672 140160650 645338444 2379859608 ...
...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Sep 17 2018
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
Table[A[n, 1 + d - n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Sep 11 2019, after Alois P. Heinz *)
-
\\ here R(n,k) gives k'th column as a vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v,[0]))[n])); v}
{my(T=Mat(vector(8, k, R(8, k)~))); for(n=1, #T~, print(T[n,]))} \\ Andrew Howroyd, Sep 15 2018
A319541
Triangle read by rows: T(n,k) is the number of binary rooted trees with n leaves of exactly k colors and all non-leaf nodes having out-degree 2.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 2, 14, 27, 15, 3, 48, 180, 240, 105, 6, 171, 1089, 2604, 2625, 945, 11, 614, 6333, 24180, 42075, 34020, 10395, 23, 2270, 36309, 207732, 554820, 755370, 509355, 135135, 46, 8518, 207255, 1710108, 6578550, 13408740, 14963130, 8648640, 2027025
Offset: 1
Triangle begins:
1;
1, 1;
1, 4, 3;
2, 14, 27, 15;
3, 48, 180, 240, 105;
6, 171, 1089, 2604, 2625, 945;
11, 614, 6333, 24180, 42075, 34020, 10395;
23, 2270, 36309, 207732, 554820, 755370, 509355, 135135;
...
-
A:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(A(n/2, k)))+add(A(i, k)*A(n-i, k), i=1..n/2))
end:
T:= (n, k)-> add((-1)^i*binomial(k, i)*A(n, k-i), i=0..k):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Sep 23 2018
-
A[n_, k_] := A[n, k] = If[n<2, k n, If[OddQ[n], 0, (#(1-#)/2)&[A[n/2, k]]] + Sum[A[i, k] A[n - i, k], {i, 1, n/2}]];
T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2019, after Alois P. Heinz *)
-
\\ here R(n,k) is k-th column of A319539 as a vector.
R(n,k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))}
{my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}
A339780
Triangle read by rows: T(n,k) is the number of homeomorphically irreducible leaf colored trees with n leaves using exactly k colors.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 2, 7, 9, 4, 0, 3, 24, 63, 68, 26, 0, 7, 91, 412, 812, 720, 236, 0, 13, 354, 2673, 8512, 13100, 9672, 2752, 0, 32, 1491, 17571, 84312, 199820, 248904, 156492, 39208, 0, 73, 6504, 117365, 814184, 2782970, 5194580, 5408620, 2953792, 660032
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 2, 7, 9, 4;
0, 3, 24, 63, 68, 26;
0, 7, 91, 412, 812, 720, 236;
0, 13, 354, 2673, 8512, 13100, 9672, 2752;
0, 32, 1491, 17571, 84312, 199820, 248904, 156492, 39208;
...
-
\\ here U(n,k) is A339779 as vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
U(n, k)={my(g=x*Ser(R(n,k))); Vec(1 + g + k*x*g - g^2)}
M(n, m=n)={my(v=vector(m+1, k, U(n, k-1)~)); Mat(vector(m+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))}
{ my(T=M(8)); for(n=1, #T~, print(T[n,1..n])); }
A319377
Number of series-reduced rooted trees with n leaves of exactly two colors.
Original entry on oeis.org
1, 6, 30, 146, 719, 3590, 18283, 94648, 497757, 2652898, 14307845, 77958746, 428588051, 2374676854, 13247984959, 74357762790, 419604029622, 2379243477538, 13549087798391, 77458553063930, 444383895880897, 2557639072274418, 14763596994726379, 85449948037167684
Offset: 2
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
a:= n-> A(n, 2) -2*A(n, 1):
seq(a(n), n=2..30); # Alois P. Heinz, Sep 18 2018
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]];
a[n_] := A[n, 2] - 2*A[n, 1];
a /@ Range[2, 30] (* Jean-François Alcover, Sep 24 2019, after Alois P. Heinz *)
-
\\ here R(n,k) is k-th column of A319254.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
seq(n)={(R(n,2)-2*R(n,1))[2..n]}
A326396
Total number of colors in all series-reduced rooted trees with n leaves where colors span an initial interval of the color palette.
Original entry on oeis.org
1, 3, 26, 322, 5210, 104421, 2491498, 68907073, 2166242180, 76266794945, 2972079029674, 126987589678185, 5902427979920102, 296484317531254557, 16003975713659818226, 923838934059255332723, 56788871072327503930862, 3703444074072753204057172
Offset: 1
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
a:= n-> add(k*add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1), k=1..n):
seq(a(n), n=1..20);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
A [n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
a[n_] := Sum[k Sum[A[n, k-j](-1)^j Binomial[k, j], {j, 0, k-1}], {k, 1, n}];
Array[a, 20] (* Jean-François Alcover, Dec 22 2020, after Alois P. Heinz *)
Showing 1-7 of 7 results.
Comments