cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000046 Number of primitive n-bead necklaces (turning over is allowed) where complements are equivalent.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 8, 14, 21, 39, 62, 112, 189, 352, 607, 1144, 2055, 3885, 7154, 13602, 25472, 48670, 92204, 176770, 337590, 649341, 1246840, 2404872, 4636389, 8964143, 17334800, 33587072, 65107998, 126387975, 245492232, 477349348, 928772649, 1808669170, 3524337789, 6872471442
Offset: 0

Views

Author

Keywords

Comments

Also, number of "twills" (Grünbaum and Shephard). - N. J. A. Sloane, Oct 21 2015

Examples

			For a(7)=8, there are seven achiral set partitions (0000001, 0000011, 0000101, 0000111, 0001001, 0010011, 0010101) and one chiral pair (0001011-0001101). - _Robert A. Russell_, Jun 19 2019
		

References

  • B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-98 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Similar to A000011, but counts primitive necklaces.
A000048 (oriented), A308706 (chiral), A179781 (achiral).
Cf. A054199.

Programs

  • Maple
    with(numtheory); A000046 := proc(n) local s,d; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*A000011(n/d); od; RETURN(s); fi; end;
  • Mathematica
    a11[0] = 1; a11[n_] := 2^Floor[n/2]/2 + Sum[EulerPhi[2*d]*2^(n/d), {d, Divisors[n]}]/n/4; a[0] = 1; a[n_] := Sum[MoebiusMu[d]*a11[n/d], {d, Divisors[n]}]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jul 10 2012, from formula *)
    Join[{1}, Table[(DivisorSum[NestWhile[#/2 &, n, EvenQ], MoebiusMu[#] 2^(n/#) &]/(2 n) + DivisorSum[n, MoebiusMu[n/#] 2^Floor[#/2] &])/2, {n, 1, 40}]] (* Robert A. Russell, Jun 19 2019 *)
  • PARI
    apply( {A000046(n)=if(n, sumdiv(n, d, moebius(d)*A000011(n/d)), 1)}, [0..40]) \\ M. F. Hasler, May 27 2025

Formula

a(n) = Sum_{ d divides n } mu(d)*A000011(n/d).
From Robert A. Russell, Jun 19 2019: (Start)
a(n) = ((1/(2n))Sum_{odd d|n} mu(d)*2^(n/d) + Sum_{d|n} mu(n/d)*2^floor(d/2)) / 2.
a(n) = A000048(n) - A308706(n) = (A000048(n) + A179781(n))/2 = A308706(n) + A179781(n).
A000011(n) = Sum_{d|n} a(d). (End)