cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A054199 Binomial transform of A000046 (1, 1, 1, 1, 2, 3, 5, 8, 14, 21, 39, 62, 112, ...).

Original entry on oeis.org

1, 2, 4, 8, 17, 39, 95, 240, 619, 1615, 4241, 11184, 29601, 78645, 209830, 562454, 1515325, 4104547, 11180365, 30627574, 84375837, 233729358, 650888094, 1821718080, 5122765105, 14468782826, 41031251163, 116789504201, 333544999893, 955496210873, 2744724190487
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2000

Keywords

Extensions

Corrected Mar 05 2004. Thanks to Ralf Stephan for noticing this sequence was wrong.

A276543 Triangle read by rows: T(n,k) = number of primitive (period n) n-bead bracelet structures using exactly k different colored beads.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 13, 11, 3, 1, 0, 8, 31, 33, 16, 3, 1, 0, 14, 80, 136, 85, 27, 4, 1, 0, 21, 201, 478, 434, 171, 37, 4, 1, 0, 39, 533, 1849, 2270, 1249, 338, 54, 5, 1, 0, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 09 2017

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

Examples

			Triangle starts:
  1
  0  1
  0  1   1
  0  2   2    1
  0  3   5    2    1
  0  5  13   11    3    1
  0  8  31   33   16    3   1
  0 14  80  136   85   27   4  1
  0 21 201  478  434  171  37  4 1
  0 39 533 1849 2270 1249 338 54 5 1
  ...
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Partial row sums include A000046, A056362, A056363, A056364, A056365.
Row sums are A276548.

Programs

  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=(R(n)+Ach(n))/2); Mat(vectorv(n,n,sumdiv(n, d, moebius(d)*M[n/d,])))}
    { my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n, k) = Sum_{d|n} mu(n/d) * A152176(d, k).

A179781 a(n) = AP(n) is the total number of aperiodic k-palindromes of n, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 12, 14, 27, 31, 54, 63, 119, 123, 240, 255, 490, 511, 990, 1015, 2015, 2047, 4020, 4092, 8127, 8176, 16254, 16383, 32607, 32767, 65280, 65503, 130815, 131061, 261576, 262143, 523775, 524223, 1047540, 1048575, 2096003, 2097151, 4192254
Offset: 1

Views

Author

John P. McSorley, Jul 26 2010

Keywords

Comments

A k-composition of n is an ordered collection of k positive integers (parts) which sum to n.
A k-composition is aperiodic (primitive) if its period is k, or if it is not the concatenation of a smaller composition.
A k-palindrome of n is a k-composition of n which is a palindrome.
This sequence is AP(n), the total number of aperiodic k-palindromes of n, 1 <= k <= n.
For example AP(6)=5 because the number n=6
has 1 aperiodic 1-palindrome, namely 6 itself;
has 1 aperiodic 3-palindrome, namely 141;
has 2 aperiodic 4-palindromes, namely 2112 and 1221;
has 1 aperiodic 5-palindrome, namely 11211.
This gives a total of 1+1+2+1=5 aperiodic palindromes of 6.
Number of achiral set partitions of a primitive cycle of n elements having up to two different elements. - Robert A. Russell, Jun 19 2019

Examples

			For a(7)=7, the achiral set partitions are 0000001, 0000011, 0000101, 0000111, 0001001, 0010011, and 0010101. - _Robert A. Russell_, Jun 19 2019
		

References

  • John P. McSorley, Counting k-compositions of n with palindromic and related structures. Preprint, 2010.

Crossrefs

Row sums of A179519.
A000048 (oriented), A000046 (unoriented), A308706 (chiral), A016116 (not primitive). - Robert A. Russell, Jun 19 2019

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * 2^Floor[#/2]&];
    Array[a, 44] (* Jean-François Alcover, Nov 04 2017 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * 2^(d\2)); \\ Michel Marcus, Dec 09 2014

Formula

a(n) = Sum_{d | n} moebius(n/d)*2^(floor(d/2)) (see Baek et al. page 9). - Michel Marcus, Dec 09 2014
a(n) = 2*A000046(n) - A000048(n) = A000048(n) - 2*A308706(n) = A000046(n) - A308706(n). - Robert A. Russell, Jun 19 2019
A016116(n) = Sum_{d|n} a(d). - Robert A. Russell, Jun 19 2019
G.f.: Sum_{k>=1} mu(k)*x^k*(1 + 2*x^k)/(1 - x^(2*k)). - Andrew Howroyd, Sep 27 2019

Extensions

More terms from Michel Marcus, Dec 09 2014

A193140 Number of isonemal satins of exact period n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 1, 0, 0, 3, 0, 1, 1, 1, 1, 0, 1, 3, 1, 1, 0, 3, 1, 0, 1, 1, 3, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 0, 3, 0, 1, 0, 3, 3, 0, 1, 3, 1, 1, 1, 1, 1, 0, 1, 3, 1, 0, 1, 1, 1, 1, 0, 3, 3, 1, 0, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 0, 1, 7
Offset: 2

Views

Author

N. J. A. Sloane, Jul 16 2011

Keywords

Comments

On page 153 of Grünbaum and Shephard (1980) is Table 3 which is a list of all the (n,s)-satins with n<=100. - Michael Somos, Dec 05 2014

References

  • B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-98 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Maple
    #A193138
    U:=proc(n) local j,p3,i,t1,t2,al,even;
    t1:=ifactors(n)[2];
    t2:=nops(t1);
    if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi;
    j:=t2-even;
    p3:=0;
    for i from 1 to t2 do if t1[i][1] mod 4 = 3 then p3:=1; fi; od:
    if (al >= 2) or (p3=1) then RETURN(0) else RETURN(2^(j-1)); fi;
    end;
    #A193139:
    V:=proc(n) local j,i,t1,t2,al,even;
    t1:=ifactors(n)[2];
    t2:=nops(t1);
    if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi;
    j:=t2-even;
    if (al <= 1) then RETURN(2^(j-1)-1); fi;
    if (al = 2) then RETURN(2^j-1); fi;
    if (al >= 3) then RETURN(2^(j+1)-1); fi;
    end;
    #A193140:
    [seq(U(n)+V(n), n=3..120)];
  • Mathematica
    a[n_] := 2^With[{f = FactorInteger[n]}, Length@f - If[
      f[[1, 1]] == 2 && f[[1, 2]] > 1,
      Boole[f[[1, 2]] == 2],
      Boole[f[[1, 1]] == 2] + Boole[AnyTrue[f[[;; , 1]], Mod[#, 4] == 3 &]]
    ]] - 1;
    Table[a[n], {n, 2, 100}]
    (* Andrey Zabolotskiy, Mar 21 2021 *)

Formula

a(n) = A086669(n) - 1. - Andrey Zabolotskiy, Dec 25 2018

Extensions

a(2) = 0 prepended and name edited by Andrey Zabolotskiy, Mar 21 2021

A371992 Number of different closest packings of equal spheres for rhombohedral crystals having repeat period n.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 8, 15, 23, 41, 70, 126, 223, 406, 740, 1370, 2545, 4769, 8977, 16985, 32261, 61469, 117488, 225060, 432159, 831235, 1601796, 3090926, 5973198, 11556533, 22385600, 43405353, 84247085, 163661488, 318209920, 619181766, 1205733457, 2349558582, 4581555964, 8939468450, 17453081143, 34094082857
Offset: 1

Views

Author

R. J. Mathar, Apr 15 2024

Keywords

Crossrefs

Programs

  • Mathematica
    fa[p_,q_] := fa[p,q] = (p+q-1)!/(p!q!) - Sum[fa[p/d,q/d]/d, {d, Rest[Intersection@@(Divisors/@{p,q})]}]; (*A051168(p+q,p); Iglesias Eq. (1)*)
    fb[p_,q_] := fb[p,q] = (Quotient[p,2]+Quotient[q,2])!/(Quotient[p,2]!Quotient[q,2]!) - Sum[fb[p/d,q/d], {d, Rest[Intersection@@(Divisors/@{p,q})]}]; (*A180424(p+q,p); Eq. (2)*)
    am[p_] := am[p] = 2^(p-1) - Sum[am[p/d], {d, Rest@Divisors@p}]; (*A000740; Eq. (6)*)
    atf[p_] := atf[p] = 2^(p-1)/p - Sum[atf[p/d]/d, {d, Select[Rest@Divisors@p, OddQ]}];(*A000048; Eq. (9)*)
    a[n_] := Sum[With[{p=n-q}, fa[p,q]+fb[p,q] + If[p==q, am[p]+atf[p]-fa[p,q]-fb[p,q], 0] / 2], {q, Select[Range[n/2], !Divisible[n-2#,3]& (*the opposite condition would give A371991*)]}] / 2; (* Eq. (5) *)
    Table[a[n], {n, 2, 40}] (* Andrei Zabolotskii, May 30 2025 *)
  • PARI
    apply( {A371992(n)=sum(q=1, n\2, if((n-2*q)%3, A051168(n,q)+A180424(n,q)))/2}, [1..40]) \\ M. F. Hasler, Jun 05 2025

Formula

a(n) + A371991(n) = A000046(n).
a(n+1)/a(n) = 2 - 2/n + o(1/n). - M. F. Hasler, Jun 09 2025

Extensions

Offset changed to 1 and a(1) = 0 prefixed by M. F. Hasler, Jun 05 2025

A005441 Number of isonemal fabrics of period exactly n.

Original entry on oeis.org

1, 1, 4, 4, 9, 8, 55, 21, 104, 62, 429, 196, 800, 698, 4674, 2070, 7721, 7154
Offset: 2

Views

Author

Keywords

References

  • B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-97 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. [gives different a(10) which is probably erroneous]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000046(n) + A193140(n) + A262589(n).

Extensions

a(14)-a(19) from second Grünbaum and Shephard paper added by Sean A. Irvine, Jun 26 2016
a(10) corrected by Andrey Zabolotskiy, Apr 14 2023

A056367 Number of primitive (period n) bracelet structures using exactly three different colored beads.

Original entry on oeis.org

0, 0, 1, 2, 5, 13, 31, 80, 201, 533, 1401, 3822, 10395, 28859, 80201, 225286, 634265, 1796433, 5100325, 14534758, 41513402, 118879249, 341094843, 980661980, 2824223490, 8146897815, 23535345170
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A276543.
Cf. A056304.

Formula

A371991 Number of different closest packings of equal spheres for hexagonal crystals having repeat period n.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 6, 6, 16, 21, 42, 63, 129, 201, 404, 685, 1340, 2385, 4625, 8487, 16409, 30735, 59282, 112530, 217182, 415605, 803076, 1545463, 2990945, 5778267, 11201472, 21702645, 42140890, 81830744, 159139428, 309590883, 602935713, 1174779207, 2290915478, 4469734225, 8726815041, 17047041429, 33319598126
Offset: 1

Views

Author

R. J. Mathar, Apr 15 2024

Keywords

Crossrefs

Programs

Formula

a(n) + A371992(n) = A000046(n).
a(n+1)/a(n) = 2 - 2/n + O(1/n^2). - M. F. Hasler, Jun 09 2025

Extensions

Offset changed to 1 and a(1) = 1 prefixed by M. F. Hasler, Jun 09 2025

A262589 Number of other isonemal fabrics of exact period n.

Original entry on oeis.org

0, 0, 2, 0, 4, 0, 40, 0, 64, 0, 316, 6, 448, 90, 3529, 14, 3836, 0
Offset: 2

Views

Author

N. J. A. Sloane, Oct 21 2015

Keywords

References

  • B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-97 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. [gives different a(10) which is probably erroneous]

Crossrefs

Formula

A005441(n) = A000046(n) + A193140(n) + a(n).

Extensions

a(14)-a(19) using formula added, a(10) corrected by Andrey Zabolotskiy, Apr 14 2023

A308706 Number of chiral pairs of set partitions of a primitive cycle of n elements having exactly two different elements.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 7, 12, 31, 58, 126, 233, 484, 904, 1800, 3395, 6643, 12612, 24457, 46655, 90157, 172750, 333498, 641214, 1238664, 2388618, 4620006, 8931536, 17302033, 33521792, 65042495, 126257160, 245361171, 477087772, 928510506, 1808145395, 3523813566
Offset: 0

Views

Author

Robert A. Russell, Jun 18 2019

Keywords

Examples

			For a(7)=1, the chiral pair is 0001011-0001101.  For a(8)=2, the chiral pairs are 00001011-00001101 and 00010011-00011001.
		

Crossrefs

Cf. A000048 (oriented), A000046 (unoriented), A179781 (achiral), A059053 (not primitive).

Programs

  • Mathematica
    Join[{0}, Table[(DivisorSum[NestWhile[#/2 &, n, EvenQ], MoebiusMu[#] 2^(n/#) &]/(2 n) - DivisorSum[n, MoebiusMu[n/#] 2^Floor[#/2] &])/2, {n, 1, 40}]]
  • PARI
    a(n) = if (n, (sumdiv(n, d, if (d%2, moebius(d)*2^(n/d)))/(2*n) - sumdiv(n, d, moebius(n/d)*2^(d\2)))/2, 0); \\ Michel Marcus, Jun 27 2019; corrected Jun 12 2022

Formula

a(n) = ((1/(2n)) * Sum_{odd d|n} mu(d)*2^(n/d) - Sum_{d|n} mu(n/d)*2^floor(d/2)) / 2, where mu is the Möbius function at A008683.
a(n) = A000048(n) - A000046(n) = (A000048(n) - A179781(n))/2 = A000046(n) - A179781(n).
A059053(n) = Sum_{d|n} a(d).
Showing 1-10 of 12 results. Next