A000046
Number of primitive n-bead necklaces (turning over is allowed) where complements are equivalent.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 8, 14, 21, 39, 62, 112, 189, 352, 607, 1144, 2055, 3885, 7154, 13602, 25472, 48670, 92204, 176770, 337590, 649341, 1246840, 2404872, 4636389, 8964143, 17334800, 33587072, 65107998, 126387975, 245492232, 477349348, 928772649, 1808669170, 3524337789, 6872471442
Offset: 0
For a(7)=8, there are seven achiral set partitions (0000001, 0000011, 0000101, 0000111, 0001001, 0010011, 0010101) and one chiral pair (0001011-0001101). - _Robert A. Russell_, Jun 19 2019
- B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-98 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Christian G. Bower, Table of n, a(n) for n = 0..1000
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- J. E. Iglesias, A formula for the number of closest packings of equal spheres having a given repeat period, Z. Krist. 155 (1981) 121-127, Table 1.
- Sara Jensen, Sequence knitting, J. Math. Arts (2023).
- Karyn McLellan, Periodic coefficients and random Fibonacci sequences, Electronic Journal of Combinatorics, 20(4), 2013, #P32.
- Index entries for sequences related to necklaces
Similar to
A000011, but counts primitive necklaces.
-
with(numtheory); A000046 := proc(n) local s,d; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*A000011(n/d); od; RETURN(s); fi; end;
-
a11[0] = 1; a11[n_] := 2^Floor[n/2]/2 + Sum[EulerPhi[2*d]*2^(n/d), {d, Divisors[n]}]/n/4; a[0] = 1; a[n_] := Sum[MoebiusMu[d]*a11[n/d], {d, Divisors[n]}]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jul 10 2012, from formula *)
Join[{1}, Table[(DivisorSum[NestWhile[#/2 &, n, EvenQ], MoebiusMu[#] 2^(n/#) &]/(2 n) + DivisorSum[n, MoebiusMu[n/#] 2^Floor[#/2] &])/2, {n, 1, 40}]] (* Robert A. Russell, Jun 19 2019 *)
-
apply( {A000046(n)=if(n, sumdiv(n, d, moebius(d)*A000011(n/d)), 1)}, [0..40]) \\ M. F. Hasler, May 27 2025
A179519
'AP(n,k)' triangle read by rows. AP(n,k) is the number of aperiodic k-palindromes of n.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0, 3, 0, 3, 0, 0, 1, 0, 3, 2, 3, 2, 1, 0, 1, 0, 3, 0, 6, 0, 4, 0, 0, 1, 0, 4, 4, 5, 4, 4, 4, 1, 0, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 0, 1, 0, 4, 4, 10, 8, 10, 8, 4, 4, 1, 0
Offset: 1
The triangle begins
1
1,0
1,0,0
1,0,1,0
1,0,2,0,0
1,0,1,2,1,0
1,0,3,0,3,0,0
1,0,3,2,3,2,1,0
1,0,3,0,6,0,4,0,0
1,0,4,4,5,4,4,4,1,0
For example, row 8 is 1,0,3,2,3,2,1,0.
We have AP(8,3)=3 because there are 3 aperiodic 3-palindromes of 8, namely: 161, 242, and 323.
We have AP(8,4)=2 because there are 2 aperiodic 4-palindromes of 8, namely: 3113 and 1331.
- John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010.
If we count the aperiodic k-palindromes of n up to cyclic equivalence, APE(n, k), we get sequence
A179317.
-
T[n_, k_] := Sum[MoebiusMu[d]*QBinomial[n/d-1, k/d-1, -1], {d, Divisors[ GCD[n, k]]}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
-
\\ here p(n,k)=A051159(n-1,k-1) is number of k-palindromes of n.
p(n, k) = if(n%2==1&&k%2==0, 0, binomial((n-1)\2, (k-1)\2));
T(n, k) = sumdiv(gcd(n,k), d, moebius(d) * p(n/d, k/d));
for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Oct 07 2017
A181135
a(n) = ADP(n) is the total number of aperiodic k-double-palindromes of n, where 2 <= k <= n.
Original entry on oeis.org
0, 0, 2, 4, 12, 16, 42, 60, 112, 168, 310, 432, 756, 1106, 1722, 2640, 4080, 6062, 9198, 13860, 20300, 31062, 45034, 68340, 98208, 149940, 212576, 325080, 458724, 700128, 983010, 1501440, 2096096, 3202800, 4456074, 6800976, 9437148, 14398958, 19920474
Offset: 1
- John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010.
Row sums of
A181111 (number of aperiodic k-double-palindromes of n).
-
a(n) = { sumdiv(n, d, moebius(n/d) * (n * if(d%2, 1, 3/2) * 2^((d-1)\2) - 2^(d\2) )) } \\ Andrew Howroyd, Sep 27 2019
A308706
Number of chiral pairs of set partitions of a primitive cycle of n elements having exactly two different elements.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 2, 7, 12, 31, 58, 126, 233, 484, 904, 1800, 3395, 6643, 12612, 24457, 46655, 90157, 172750, 333498, 641214, 1238664, 2388618, 4620006, 8931536, 17302033, 33521792, 65042495, 126257160, 245361171, 477087772, 928510506, 1808145395, 3523813566
Offset: 0
For a(7)=1, the chiral pair is 0001011-0001101. For a(8)=2, the chiral pairs are 00001011-00001101 and 00010011-00011001.
-
Join[{0}, Table[(DivisorSum[NestWhile[#/2 &, n, EvenQ], MoebiusMu[#] 2^(n/#) &]/(2 n) - DivisorSum[n, MoebiusMu[n/#] 2^Floor[#/2] &])/2, {n, 1, 40}]]
-
a(n) = if (n, (sumdiv(n, d, if (d%2, moebius(d)*2^(n/d)))/(2*n) - sumdiv(n, d, moebius(n/d)*2^(d\2)))/2, 0); \\ Michel Marcus, Jun 27 2019; corrected Jun 12 2022
A180750
a(n) = DP(n) is the total number of k-double-palindromes of n, where 2 <= k <= n.
Original entry on oeis.org
0, 1, 3, 6, 13, 21, 43, 68, 116, 185, 311, 464, 757, 1157, 1741, 2720, 4081, 6214, 9199, 14078, 20353, 31405, 45035, 68930, 98224, 150761, 212706, 326362, 458725, 702209, 983011, 1504400, 2096441, 3207137, 4456139, 6808172, 9437149, 14408669, 19921297, 30393800
Offset: 1
- John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010.
a(n) is the sum of the n-th row of the triangle sequence
A180653 (number of k-double-palindromes of n).
The n-th term of sequence
A016116 is the total number of k-palindromes (single palindromes) of n.
Showing 1-5 of 5 results.
Comments