cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A362294 Erroneous version of A005441.

Original entry on oeis.org

1, 1, 4, 4, 9, 8, 55, 21, 105, 62, 429, 196
Offset: 2

Views

Author

Keywords

Comments

Included in accordance with OEIS policy of including published but erroneous sequences to serve as pointers to the correct versions.

References

  • B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-97 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. [the term a(10) = 105 given there is probably erroneous]

A193140 Number of isonemal satins of exact period n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 1, 0, 0, 3, 0, 1, 1, 1, 1, 0, 1, 3, 1, 1, 0, 3, 1, 0, 1, 1, 3, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 0, 3, 0, 1, 0, 3, 3, 0, 1, 3, 1, 1, 1, 1, 1, 0, 1, 3, 1, 0, 1, 1, 1, 1, 0, 3, 3, 1, 0, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 0, 1, 7
Offset: 2

Views

Author

N. J. A. Sloane, Jul 16 2011

Keywords

Comments

On page 153 of Grünbaum and Shephard (1980) is Table 3 which is a list of all the (n,s)-satins with n<=100. - Michael Somos, Dec 05 2014

References

  • B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-98 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Maple
    #A193138
    U:=proc(n) local j,p3,i,t1,t2,al,even;
    t1:=ifactors(n)[2];
    t2:=nops(t1);
    if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi;
    j:=t2-even;
    p3:=0;
    for i from 1 to t2 do if t1[i][1] mod 4 = 3 then p3:=1; fi; od:
    if (al >= 2) or (p3=1) then RETURN(0) else RETURN(2^(j-1)); fi;
    end;
    #A193139:
    V:=proc(n) local j,i,t1,t2,al,even;
    t1:=ifactors(n)[2];
    t2:=nops(t1);
    if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi;
    j:=t2-even;
    if (al <= 1) then RETURN(2^(j-1)-1); fi;
    if (al = 2) then RETURN(2^j-1); fi;
    if (al >= 3) then RETURN(2^(j+1)-1); fi;
    end;
    #A193140:
    [seq(U(n)+V(n), n=3..120)];
  • Mathematica
    a[n_] := 2^With[{f = FactorInteger[n]}, Length@f - If[
      f[[1, 1]] == 2 && f[[1, 2]] > 1,
      Boole[f[[1, 2]] == 2],
      Boole[f[[1, 1]] == 2] + Boole[AnyTrue[f[[;; , 1]], Mod[#, 4] == 3 &]]
    ]] - 1;
    Table[a[n], {n, 2, 100}]
    (* Andrey Zabolotskiy, Mar 21 2021 *)

Formula

a(n) = A086669(n) - 1. - Andrey Zabolotskiy, Dec 25 2018

Extensions

a(2) = 0 prepended and name edited by Andrey Zabolotskiy, Mar 21 2021

A262589 Number of other isonemal fabrics of exact period n.

Original entry on oeis.org

0, 0, 2, 0, 4, 0, 40, 0, 64, 0, 316, 6, 448, 90, 3529, 14, 3836, 0
Offset: 2

Views

Author

N. J. A. Sloane, Oct 21 2015

Keywords

References

  • B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-97 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. [gives different a(10) which is probably erroneous]

Crossrefs

Formula

A005441(n) = A000046(n) + A193140(n) + a(n).

Extensions

a(14)-a(19) using formula added, a(10) corrected by Andrey Zabolotskiy, Apr 14 2023
Showing 1-3 of 3 results.