cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000047 Number of integers <= 2^n of form x^2 - 2y^2.

Original entry on oeis.org

1, 2, 3, 5, 8, 15, 26, 48, 87, 161, 299, 563, 1066, 2030, 3885, 7464, 14384, 27779, 53782, 104359, 202838, 394860, 769777, 1502603, 2936519, 5744932, 11249805, 22048769, 43248623, 84894767, 166758141, 327770275, 644627310, 1268491353, 2497412741
Offset: 0

Views

Author

Keywords

Examples

			There are 5 integers <= 2^3 of form x^2 - 2y^2. The five (x,y) pairs (1,0), (2,1), (2,0), (3,1), (4,2) give respectively: 1, 2, 4, 7, 8. So a(3) = 5. - _Bernard Schott_, Feb 10 2019
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A035251.

Programs

  • Mathematica
    cnt=0; n=0; Table[n++; While[{p,e}=Transpose[FactorInteger[n]]; If[Select[p^e, MemberQ[{3,5}, Mod[ #,8]] &] == {}, cnt++ ]; n<2^k, n++ ]; cnt, {k,0,20}] (* T. D. Noe, Jan 19 2009 *)
  • PARI
    A000047(n)={ local(f,c=0); for(m=1,2^n, for(i=1,#f=factor(m)~, abs(f[1,i]%8-4)==1 || next; f[2,i]%2 & next(2));c++);c} \\ See comment in A035251: m=3 or 5 mod 8; M. F. Hasler, Jan 19 2009

Extensions

More terms from Giovanni Resta and Harry J. Smith, Jan 24 2009