A000066 Smallest number of vertices in trivalent graph with girth (shortest cycle) = n.
4, 6, 10, 14, 24, 30, 58, 70, 112, 126
Offset: 3
References
- A. T. Balaban, Trivalent graphs of girth nine and eleven and relationships among cages, Rev. Roum. Math. Pures et Appl. 18 (1973) 1033-1043.
- Brendan McKay, personal communication.
- H. Sachs, On regular graphs with given girth, pp. 91-97 of M. Fiedler, editor, Theory of Graphs and Its Applications: Proceedings of the Symposium, Smolenice, Czechoslovakia, 1963. Academic Press, NY, 1964.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Gabriela Araujo-Pardo, Geoffrey Exoo, and Robert Jajcay, Small bi-regular graphs of even girth Discrete Mathematics 339.2 (2016): 658-667.
- Andries E. Brouwer, Cages
- Geoff Exoo, Regular graphs of given degree and girth
- G. Exoo and R. Jajcay, Dynamic cage survey, Electr. J. Combin. (2008, 2011).
- Brendan McKay, W. Myrvold and J. Nadon, Fast backtracking principles applied to find new cages, 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, 188-191.
- M. O'Keefe and P. K. Wong, A smallest graph of girth 10 and valency 3, J. Combin. Theory, B 29 (1980), 91-105.
- Gordon Royle, Cubic Cages
- Eric Weisstein's World of Mathematics, Cage Graph
- Pak Ken Wong, Cages-a survey, J. Graph Theory 6 (1982), no. 1, 1-22.
Crossrefs
Formula
For all g > 2, a(g) >= A027383(g-1), with equality if and only if g = 3, 4, 5, 6, 8, or 12. - Jason Kimberley, Dec 21 2012 and Jan 01 2013
Extensions
Additional comments from Matthew Cook, May 15 2003
Balaban proved 112 as an upper bound for a(11). The proof that it is also a lower bound is in the paper by Brendan McKay, W. Myrvold and J. Nadon.
Comments