A000106 2nd power of rooted tree enumerator; number of linear forests of 2 rooted trees.
1, 2, 5, 12, 30, 74, 188, 478, 1235, 3214, 8450, 22370, 59676, 160140, 432237, 1172436, 3194870, 8741442, 24007045, 66154654, 182864692, 506909562, 1408854940, 3925075510, 10959698606, 30665337738, 85967279447, 241433975446, 679192039401, 1913681367936, 5399924120339
Offset: 2
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000 (terms n = 2..200 from T. D. Noe)
- Vsevolod Gubarev, Rota-Baxter operators on a sum of fields, arXiv:1811.08219 [math.RA], 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 385
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Haskell
a000106 n = a000106_list !! (n-2) a000106_list = drop 2 $ conv a000081_list [] where conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws' where ws' = v : ws -- Reinhard Zumkeller, Jun 17 2013
-
Maple
b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-1)^2, x=0, n+1), x,n): seq(a(n), n=2..35); # Alois P. Heinz, Aug 21 2008
-
Mathematica
<
Jean-François Alcover, Nov 02 2011 *) b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-1]^2, {x, 0, n}]; Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Dec 01 2016, after Alois P. Heinz *)
Formula
Self-convolution of rooted trees A000081.
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.87984802514205060808180678... . - Vaclav Kotesovec, Sep 11 2014
In the asymptotics above the constant c = 2 * A187770. - Vladimir Reshetnikov, Aug 13 2016
Extensions
More terms from Christian G. Bower, Nov 15 1999