cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000109 Number of simplicial polyhedra with n vertices; simple planar graphs with n vertices and 3n-6 edges; maximal simple planar graphs with n vertices; planar triangulations with n vertices; triangulations of the sphere with n vertices; 3-connected cubic planar graphs on 2n-4 vertices.

Original entry on oeis.org

1, 1, 1, 2, 5, 14, 50, 233, 1249, 7595, 49566, 339722, 2406841, 17490241, 129664753, 977526957, 7475907149, 57896349553, 453382272049, 3585853662949, 28615703421545
Offset: 3

Views

Author

Keywords

Comments

Every planar triangulation on n >= 4 vertices is 3-connected (the connectivity either 3, 4, or 5) and its dual graph is a 3-connected cubic planar graph on 2n-4 vertices. - Manfred Scheucher, Mar 17 2023

References

  • G. Brinkmann and Brendan McKay, in preparation. [Looking at http://users.cecs.anu.edu.au/~bdm/publications.html, there are a few papers with Brinkmann that seem relevant, in particular #126 but also #97, 81, 158. Perhaps the right one is 126.]
  • M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • B. Grünbaum, Convex Polytopes. Wiley, NY, 1967, p. 424.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

From William P. Orrick, Apr 07 2021: (Start)
a(n) >= A007816(n-3)/n! = binomial(n,2)*(4*n-11)!/(n!*(3*n-6)!) for all n >= 4.
a(n) ~ A007816(n-3)/n! = binomial(n,2)*(4*n-11)!/(n!*(3*n-6)!) ~ (1/64)*sqrt(1/(6*Pi))*n^(-7/2)*(256/27)^(n-2), using the theorem that the automorphism group of a maximal planar graph is almost certainly trivial as n gets large. (Tutte)
(End)

Extensions

Extended by Brendan McKay and Gunnar Brinkmann using their program "plantri", Dec 19 2000
Definition clarified by Manfred Scheucher, Mar 17 2023