cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000114 Number of cusps of principal congruence subgroup GAMMA^{hat}(n).

Original entry on oeis.org

3, 4, 6, 12, 12, 24, 24, 36, 36, 60, 48, 84, 72, 96, 96, 144, 108, 180, 144, 192, 180, 264, 192, 300, 252, 324, 288, 420, 288, 480, 384, 480, 432, 576, 432, 684, 540, 672, 576, 840, 576, 924, 720, 864, 792, 1104, 768, 1176, 900, 1152, 1008, 1404, 972, 1440
Offset: 2

Views

Author

Keywords

References

  • Robert A. Rankin, Modular Forms and Functions, Cambridge 1977, p. 62.

Crossrefs

Programs

  • Maple
    A000114 := proc(n) local b,d: if n = 2 then RETURN(3); else b := n^2/2; for d from 1 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1-d^(-2)); fi; od; RETURN(b); fi: end:
  • Mathematica
    a[n_] := If[n == 2, 3, b = n^2/2; For[d = 1, d <= n, d++, If[Mod[n, d] == 0 && PrimeQ[d], b = b*(1-d^-2)]]; b]; Table[a[n], {n, 2, 50}] (* Jean-François Alcover, Feb 04 2016, adapted from Maple *)
  • PARI
    a(n) = if (n==2, 3, my(f=factor(n)); prod(k=1, #f~, 1-1/f[k,1]^2)*n^2/2); \\ Michel Marcus, Oct 23 2019

Formula

A001766(n) = n*a(n). - Michael Somos, Jan 29 2004
a(n) = ((n^2)/2)*Product_{p | n, p prime} (1-1/p^2), for n>=3. - Michel Marcus, Oct 23 2019
From Amiram Eldar, Jun 01 2025: (Start)
a(n) = A007434(n)/2 for n >= 3.
Sum_{k=1..n} a(k) ~ n^3 / (6*zeta(3)). (End)