cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000151 Number of oriented rooted trees with n nodes. Also rooted trees with n nodes and 2-colored non-root nodes.

Original entry on oeis.org

1, 2, 7, 26, 107, 458, 2058, 9498, 44947, 216598, 1059952, 5251806, 26297238, 132856766, 676398395, 3466799104, 17873508798, 92630098886, 482292684506, 2521610175006, 13233573019372, 69687684810980, 368114512431638, 1950037285256658, 10357028326495097, 55140508518522726, 294219119815868952, 1573132563600386854, 8427354035116949486, 45226421721391554194
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 286.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 60, R(x).
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Also the self-convolution of A005750. - Paul D. Hanna, Aug 17 2002
Column k=2 of A242249.

Programs

  • Maple
    R:=series(x+2*x^2+7*x^3+26*x^4,x,5); M:=500;
    for n from 5 to M do
    series(add( subs(x=x^k,R)/k, k=1..n-1),x,n);
    t4:=coeff(series(x*exp(%)^2,x,n+1),x,n);
    R:=series(R+t4*x^n,x,n+1); od:
    for n from 1 to M do lprint(n,coeff(R,x,n)); od: # N. J. A. Sloane, Mar 10 2007
    with(combstruct):norootree:=[S, {B = Set(S), S = Prod(Z,B,B)}, unlabeled] :seq(count(norootree,size=i),i=1..30); # with Algolib (Pab Ter)
  • Mathematica
    terms = 30; A[] = 0; Do[A[x] = x*Exp[2*Sum[A[x^k]/k, {k, 1, terms}]] + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest
    (* Jean-François Alcover, Jun 08 2011, updated Jan 11 2018 *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); A} \\ Andrew Howroyd, May 13 2018

Formula

Generating function A(x) = x+2*x^2+7*x^3+26*x^4+... satisfies A(x)=x*exp( 2*sum_{k>=1}(A(x^k)/k) ) [Harary]. - Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005
G.f.: x*Product_{n>=1} 1/(1 - x^n)^(2*a(n)) = Sum_{n>=1} a(n)*x^n.
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.64654261623294971289271351621..., c = 0.2078615974229174213216534920508516879353537904602582293754027908931077971... - Vaclav Kotesovec, Aug 20 2014, updated Dec 26 2020

Extensions

Extended with alternate description by Christian G. Bower, Apr 15 1998
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005