A000161 Number of partitions of n into 2 squares.
1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0
Offset: 0
Examples
25 = 3^2+4^2 = 5^2, so a(25) = 2.
References
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 339
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
- Henry Bottomley, Illustration of initial terms
- R. T. Bumby, Sums of four squares, in Number theory (New York, 1991-1995), 1-8, Springer, New York, 1996.
- J. H. Conway, E. M. Rains and N. J. A. Sloane, On the existence of similar sublattices, Canad. J. Math. 51 (1999), 1300-1306 (Abstract, pdf, ps).
- Michael Gilleland, Some Self-Similar Integer Sequences
- E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, NY, 1985, p. 84.
- M. D. Hirschhorn, Some formulas for partitions into squares, Discrete Math, 211 (2000), pp. 225-228. [From _Ant King_, Oct 05 2010]
- Index entries for sequences related to sublattices
- Index entries for sequences related to sums of squares
- Index entries for "core" sequences
Crossrefs
Programs
-
Haskell
a000161 n = sum $ map (a010052 . (n -)) $ takeWhile (<= n `div` 2) a000290_list a000161_list = map a000161 [0..] -- Reinhard Zumkeller, Aug 16 2011
-
Maple
A000161 := proc(n) local i,j,ans; ans := 0; for i from 0 to n do for j from i to n do if i^2+j^2=n then ans := ans+1 fi od od; RETURN(ans); end; [ seq(A000161(i), i=0..50) ]; A000161 := n -> nops( numtheory[sum2sqr](n) ); # M. F. Hasler, Nov 23 2007
-
Mathematica
Length[PowersRepresentations[ #,2,2]] &/@Range[0,150] (* Ant King, Oct 05 2010 *)
-
PARI
a(n)=sum(i=0,n,sum(j=0,i,if(i^2+j^2-n,0,1))) \\ for illustrative purpose
-
PARI
A000161(n)=sum(k=sqrtint((n-1)\2)+1,sqrtint(n),issquare(n-k^2)) \\ Charles R Greathouse IV, Mar 21 2014, improves earlier code by M. F. Hasler, Nov 23 2007
-
PARI
A000161(n)=#sum2sqr(n) \\ See A133388 for sum2sqr(). - M. F. Hasler, May 13 2018
-
Python
from math import prod from sympy import factorint def A000161(n): f = factorint(n) return int(not any(e&1 for e in f.values())) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 1 # Chai Wah Wu, Sep 08 2022
Formula
a(n) = card { { a,b } c N | a^2+b^2 = n }. - M. F. Hasler, Nov 23 2007
Let f(n)= the number of divisors of n that are congruent to 1 modulo 4 minus the number of its divisors that are congruent to 3 modulo 4, and define delta(n) to be 1 if n is a perfect square and 0 otherwise. Then a(n)=1/2 (f(n)+delta(n)+delta(1/2 n)). - Ant King, Oct 05 2010
Comments