A000164 Number of partitions of n into 3 squares (allowing part zero).
1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 0, 1, 2, 2, 2, 0, 2, 1, 0, 1, 2, 2, 1, 2, 1, 2, 0, 1, 3, 1, 1, 1, 2, 1, 0, 1, 2, 3, 2, 1, 2, 3, 0, 1, 2, 1, 2, 0, 2, 2, 0, 1, 3, 3, 1, 2, 2, 1, 0, 2, 2, 3, 2, 1, 2, 1, 0, 1, 4, 2, 2, 1, 2, 3, 0, 1, 4, 3, 1, 0, 1, 2, 0, 1, 2, 3, 3, 2, 4, 2, 0, 2
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^8 + 2*x^9 + x^10 + x^11 + x^12 + x^13 + ...
References
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 84.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Hirschhorn, M. D., Some formulas for partitions into squares, Discrete Math. 211 (2000), pp. 225-228.
Crossrefs
Programs
-
Maple
A000164 := proc(n) local a,x,y,z2,z ; a := 0 ; for x from 0 do if 3*x^2 > n then return a; end if; for y from x do if x^2+2*y^2 > n then break; end if; z2 := n-x^2-y^2 ; if issqr(z2) then z := sqrt(z2) ; if z >= y then a := a+1 ; end if; end if; end do: end do: a; end proc: # R. J. Mathar, Feb 12 2017
-
Mathematica
Length[PowersRepresentations[ #, 3, 2]] & /@ Range[0, 104] e[0,r_,s_,m_]=0;e[n_,r_,s_,m_]:=Length[Select[Divisors[n],Mod[ #,m]==r &]]-Length[Select[Divisors[n],Mod[ #,m]==s &]];alpha[n_]:=5delta[n]+3delta[1/2 n]+4delta[1/3n];beta[n_]:=4e[n,1,3,4]+3e[n,1,7,8]+3e[n,3,5,8];delta[n_]:=If[IntegerQ[Sqrt[n]],1,0];f[n_]:=Table[n-k^2, {k,1,Floor[Sqrt[n]]}]; gamma[n_]:=2 Plus@@(e[ #,1,3,4] &/@f[n]);p3[n_]:=1/12(alpha[n]+beta[n]+gamma[n]);p3[ # ] &/@Range[0,104] (* Ant King, Oct 15 2010 *) a[ n_] := If[ n < 0, 0, Sum[ Boole[ n == i^2 + j^2 + k^2], {i, 0, Sqrt[n]}, {j, 0, i}, {k, 0, j}]]; (* Michael Somos, Aug 15 2015 *)
-
PARI
{a(n) = if( n<0, 0, sum( i=0, sqrtint(n), sum( j=0, i, sum( k=0, j, n == i^2 + j^2 + k^2))))}; /* Michael Somos, Jun 05 2012 */
-
Python
import collections; a = collections.Counter(i*i + j*j + k*k for i in range(100) for j in range(i+1) for k in range(j+1)) # David Radcliffe, Apr 15 2019
Formula
Let e(n,r,s,m) be the excess of the number of n's r(mod m) divisors over the number of its s (mod m) divisors, and let delta(n)=1 if n is a perfect square and 0 otherwise. Then, if we define alpha(n) = 5*delta(n) + 3*delta(n/2) + 4*delta(n/3), beta(n) = 4*e(n,1,3,4) + 3*e(n,1,7,8) + 3*e(n,3,5,8), gamma(n) = 2*Sum_{1<=k^2Ant King, Oct 15 2010
Extensions
Name clarified by Wolfdieter Lang, Apr 08 2013
Comments