cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000184 Number of genus 0 rooted maps with 3 faces with n vertices.

Original entry on oeis.org

2, 22, 164, 1030, 5868, 31388, 160648, 795846, 3845020, 18211380, 84876152, 390331292, 1775032504, 7995075960, 35715205136, 158401506118, 698102372988, 3059470021316, 13341467466520, 57918065919924, 250419305769512, 1078769490401032, 4631680461623664, 19825379450255900, 84622558822506328, 360270317908904328, 1530148541536781488, 6484511936352543096, 27423786092731382000, 115756362341775227888
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Column 3 of A269920.
Column 0 of A270407.

Programs

  • Magma
    [n*((n+1)*(n+2)*Catalan(n+1) - 3*4^n)/12: n in [2..30]]; // G. C. Greubel, Jul 18 2024
    
  • Mathematica
    a[n_] := 1/12*(2^(n+1)*(2*n+1)!!/(n-1)!-3*4^n*n); Table[a[n], {n, 2, 31}] (* Jean-François Alcover, Mar 12 2014 *)
  • SageMath
    [n*(2*(2*n+1)*binomial(2*n,n) - 3*4^n)//12 for n in range(2,30)] # G. C. Greubel, Jul 18 2024

Formula

a(n) = 2 * A029887(n-2). - Ralf Stephan, Aug 17 2004
a(n) = 4^n*Gamma(n+3/2)/(3*sqrt(Pi)*Gamma(n)) - n*4^(n-1). - Mark van Hoeij, Jul 06 2010
From G. C. Greubel, Jul 18 2024: (Start)
a(n) = (n/12)*( (n+1)*(n+2)*Catalan(n+1) - 3*4^n ).
G.f.: x*(1 - sqrt(1 - 4*x))/(1-4*x)^(5/2).
E.g.f.: (x/3)*exp(2*x)*( - 3*exp(2*x) + 3*(1+2*x)*BesselI(0, 2*x) + (3+8*x)*BesselI(1, 2*x) + 2*x*BesselI(2, 2*x) ). (End)

Extensions

More terms from Sean A. Irvine, Nov 14 2010