cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000191 Generalized tangent numbers d(3, n).

Original entry on oeis.org

2, 46, 3362, 515086, 135274562, 54276473326, 30884386347362, 23657073914466766, 23471059057478981762, 29279357851856595135406, 44855282210826271011257762, 82787899853638102222862479246, 181184428895772987376073015175362, 463938847087789978515380344866258286
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000436, A007289, overview in A349264.

Programs

  • Maple
    gf := (2*sin(t))/(2*cos(2*t) - 1): ser := series(gf, t, 26):
    seq((2*n+1)!*coeff(ser, t, 2*n+1), n=0..23); # Peter Luschny, Oct 17 2020
    a := n -> (-1)^n*(-6)^(2*n+1)*euler(2*n+1, 1/6):
    seq(a(n), n = 0..13); # Peter Luschny, Nov 26 2020
  • Mathematica
    (* Formulas from D. Shanks, see link, p. 690. *)
    L[ a_, s_, t_:10000 ] := Plus@@Table[ N[ JacobiSymbol[ -a, 2k+1 ](2k+1)^(-s), 30 ], {k, 0, t} ]; d[ a_, n_, t_:10000 ] := (2n-1)!/Sqrt[ a ](2a/Pi)^(2n)L[ -a, 2n, t ] (* Eric W. Weisstein, Aug 30 2001 *)

Formula

a(n) = 2*A002439(n). - N. J. A. Sloane, Nov 06 2009
E.g.f.: (2*sin(t))/(2*cos(2*t) - 1), odd terms only. - Peter Luschny, Oct 17 2020
Alternative form for e.g.f.: a(n) = (2*n+1)!*[x^(2*n)](sqrt(3)/(6*x))*(sec(x + Pi/3) + sec(x + 2*Pi/3)). - Peter Bala, Nov 16 2020
a(n) = (-1)^(n+1)*6^(2*n+1)*euler(2*n+1, 1/6). - Peter Luschny, Nov 26 2020

Extensions

More terms from Eric W. Weisstein, Aug 30 2001
Offset set to 0 by Peter Luschny, Nov 26 2020