A000195 a(n) = floor(log(n)).
0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- G. Whyman, N. Ohtori, E. Shulzinger, and Ed. Bormashenko, Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?, Physica A: Statistical Mechanics and its Applications, 461, 595-601 (2016).
- Index entries for sequences related to Benford's law
Programs
-
Haskell
a000195 = floor . log . fromIntegral -- Reinhard Zumkeller, Mar 17 2015
-
Maple
Digits := 100; f := n->floor(evalf(log(n))); [ seq(f(n), n=1..100) ];
-
Mathematica
Floor@ Log@ Range@ 105 (* Michael De Vlieger, Aug 21 2017 *)
-
PARI
a(n)=floor(log(n))
Formula
Conjecture: a(n) = floor(3*n^2*(n^(1/(3*n^2))-1)), checked for n <= 10^6. - Joseph M. Shunia, Aug 02 2024
Comments