cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000206 Even sequences with period 2n.

Original entry on oeis.org

1, 1, 3, 4, 12, 22, 71, 181, 618, 1957, 6966, 24367, 89010, 324766, 1204815, 4482400, 16802826, 63195016, 238711285, 904338163, 3436380192, 13089961012, 49979421837, 191221556269, 733014218506, 2814758323498, 10825986453978, 41700030726757, 160842946895004
Offset: 0

Views

Author

Keywords

Comments

"Even" orbits of binary necklaces of length 2n under group D_n X S_2.

References

  • E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          `if`(n=0, 1, 2^(floor(n/2)-1)
               +add(phi(2*d) *2^(n/d), d=divisors(n))/(4*n))
        end:
    a:= n-> `if`(n=0, 1, `if`(irem(n, 2)=0,
             (b(2*n) +b(n) +4^(n/2-1) -2^(n/2-1))/2, b(2*n)/2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 25 2012
  • Mathematica
    a[0] = 1; a11[n_] := Fold[#1 + EulerPhi[2*#2]*(2^(n/#2)/(2*n)) & , 2^Floor[n/2], Divisors[n]]/2; a[(n_)?EvenQ] := (a11[2*n] + a11[n] + 4^(n/2 - 1) - 2^(n/2 - 1))/2; a[(n_)?OddQ] := a11[2*n]/2; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Sep 01 2011, after PARI prog. *)
  • PARI
    {A000206(n)=if(n==0,1, if(n%2==0,(A000011(2*n)+A000011(n)+4^(n/2-1)-2^(n/2-1))/2, A000011(2*n)/2))} \\ Randall L Rathbun, Jan 11 2002

Formula

a(0)=1, a(n) = (A000011(2*n) + A000011(n) + 4^(n/2-1) - 2^(n/2-1))/2 if n is even, a(n) = A000011(2*n)/2 if n is odd. - Randall L Rathbun, Jan 11 2002

Extensions

More terms from Randall L Rathbun, Jan 11 2002