A000216 Take sum of squares of digits of previous term, starting with 2.
2, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37
Offset: 1
References
- R. Honsberger, Ingenuity in Mathematics, Random House, 1970, p. 83.
- P. Kiss, A generalization of a problem in number theory, Math. Sem. Notes Kobe Univ., 5 (1977), no. 3, 313-317. MR 0472667 (57 #12362).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- H. G. Grundmann, Semihappy Numbers, J. Int. Seq. 13 (2010), 10.4.8, Theorem 1.
- P. Kiss, A generalization of a problem in number theory, [Hungarian], Mat. Lapok, 25 (No. 1-2, 1974), 145-149.
- Arthur Porges, A set of eight numbers, Amer. Math. Monthly 52 (1945), 379-382.
- A. Porges, A set of eight numbers, Amer. Math. Monthly, 52 (1945), 379-382. [Annotated scanned copy]
- H. J. J. te Riele, Iteration of number-theoretic functions, Nieuw Archief v. Wiskunde, (4) 1 (1983), 345-360.
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 1).
Crossrefs
Cf. A003132 (the iterated map), A003621, A039943, A099645, A031176, A007770, A000218 (starting with 3), A080709 (starting with 4), A000221 (starting with 5), A008460 (starting with 6), A008462 (starting with 8), A008463 (starting with 9), A139566 (starting with 15), A122065 (starting with 74169). - M. F. Hasler, May 24 2009
Programs
-
Haskell
a000216 n = a000216_list !! (n-1) a000216_list = iterate a003132 2 -- Reinhard Zumkeller, Aug 24 2011
-
Magma
[2] cat &cat[[4, 16, 37, 58, 89, 145, 42, 20]: n in [0..17]]; // Vincenzo Librandi, Jan 29 2013
-
Mathematica
NestList[Total[IntegerDigits[#]^2]&, 2, 80] (* Vincenzo Librandi, Jan 29 2013 *)
-
PARI
A000216(n)=[42, 20, 4, 16, 37, 58, 89, 145, 2][n%8+8^(n<2)] \\ M. F. Hasler, May 24 2009, edited Apr 27 2018
Formula
Periodic with period 8.
Comments