cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000253 a(n) = 2*a(n-1) - a(n-2) + a(n-3) + 2^(n-1).

Original entry on oeis.org

0, 1, 4, 11, 27, 63, 142, 312, 673, 1432, 3015, 6295, 13055, 26926, 55284, 113081, 230572, 468883, 951347, 1926527, 3894878, 7863152, 15855105, 31936240, 64269135, 129234351, 259690239, 521524126, 1046810092, 2100221753, 4212028452, 8444387067
Offset: 0

Views

Author

Jason Howald (jahowald(AT)umich.edu)

Keywords

Comments

From Holger Petersen (petersen(AT)informatik.uni-stuttgart.de), May 29 2006: (Start)
Also number of binary strings of length n+2 containing the pattern 010. Proof: Clear for n = 0, 1, 2. For n > 2 each string with pattern 010 of length n-1 gives 2 strings of length n with the property by appending a symbol. In addition each string of length n-1 without 010 and ending in 01 contributes one new string. Denote by c_w(m) the number of strings of length m without 010 and ending in w.
Since there is a total of 2^m strings of length m, we have c_01(m) = c_0(m-1) = (2^{m-1} - a(m-3)) - c_1(m-1) = (2^{m-1} - a(m-3)) - (2^{m-2} - a(m-4)) = 2^{m-2} - a(m-3) + a(m-4) (the first and third equalities follow from the fact that appending a 1 will not generate the pattern). The recurrence is a(n) = 2a(n-1) + c_01(n+1) = 2a(n-1) + 2^{n-1} - a(n-2) + a(n-3).
(End)

Programs

  • Maple
    f := proc(n) option remember; if n<=1 then n else if n<=3 then 7*n-10; else 2*f(n-1)-f(n-2)+f(n-3)+2^(n-1); fi; fi; end;
    # second Maple program:
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-2|3|-5|4>>^n)[3, 4]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 27 2017
  • Mathematica
    nn=50; a=x^2/(1-x)^2; Drop[CoefficientList[Series[a x/(1-a x)/(1-2x), {x,0,nn}], x], 2] (* Geoffrey Critzer, Nov 26 2013 *)
    LinearRecurrence[{4, -5, 3, -2}, {0, 1, 4, 11}, 32] (* Jean-François Alcover, Feb 06 2016 *)

Formula

From Ralf Stephan, Aug 19 2004: (Start)
a(n) = (1/3)*(4*2^n + A077941(n-1) - 2*A077941(n+1)).
G.f.: x/((1-2*x)*(1 - 2*x + x^2 - x^3)). (End)
a(n) = A000079(n+2) - A005251(n+5). - Alois P. Heinz, Apr 03 2012