A091599 Triangle read by rows: T(n,k) is the number of nonseparable planar maps with r*n edges and a fixed outer face of r*k edges which are invariant under a rotation of 1/r for any r >= 2 (independent of actual value of r).
1, 2, 1, 6, 6, 1, 24, 26, 12, 1, 110, 120, 75, 20, 1, 546, 594, 416, 174, 30, 1, 2856, 3094, 2289, 1176, 350, 42, 1, 15504, 16728, 12768, 7322, 2880, 636, 56, 1, 86526, 93024, 72420, 44388, 20475, 6324, 1071, 72, 1, 493350, 528770, 417240, 267240, 136252, 51495, 12740, 1700, 90, 1
Offset: 1
Examples
Triangle starts: 1; 2, 1; 6, 6, 1; 24, 26, 12, 1; 110, 120, 75, 20, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
- W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
Crossrefs
Programs
-
Maple
T := proc(n,k) if k<=n then k*sum((2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!,j=k..min(n,2*k))/(2*n-k)! else 0 fi end: seq(seq(T(n,k), k=1..n),n=1..11);
-
PARI
T(n, k) = k*sum(j=k, min(n, 2*k), (2*j-k)*(j-1)!*(3*n-j-k-1)!/(((j-k)!)^2*(2*k-j)!*(n-j)!))/(2*n-k)! for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Mar 29 2021
Formula
T(n, k) = k*(Sum_{j=k..min(n, 2*k)} (2*j-k)*(j-1)!*(3*n-j-k-1)!/(((j-k)!)^2*(2*k-j)!*(n-j)!))/(2*n-k)!
Extensions
Name clarified by Andrew Howroyd, Mar 29 2021
Comments