cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000264 Number of 3-edge-connected rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle.

Original entry on oeis.org

1, 1, 3, 14, 80, 518, 3647, 27274, 213480, 1731652, 14455408, 123552488, 1077096124, 9548805240, 85884971043, 782242251522, 7203683481720, 66989439309452, 628399635777936, 5940930064989720, 56562734108608536
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    max = 21; b[n_] := (2n)!*(2n + 2)!/(2*n!*(n + 1)!^2*(n + 2)!); b[0] = 0; bf[x_] := Sum[b[n]*x^n, {n, 0, max}]; Clear[a]; a[0] = 0; a[1] = a[2] = 1; af[x_] := Sum[a[n]*x^n, {n, 0, max}]; se = Series[bf[x] - af[x*(1 + 2*bf[x])^2], {x, 0, max}] // Normal; Table[a[n], {n, 1, max}] /. SolveAlways[se == 0, x] // First (* Jean-François Alcover, Jan 31 2013, after Sean A. Irvine *)

Formula

Let b(n)=(2n)!*(2n+2)!/(2*n!*(n+1)!^2*(n+2)!). Let B(x) be the generating function producing b(n), and A(x) be the generating function producing a(n). Then these sequences satisfy the functional equation B(x)=A(x(1+2*B(x))^2). - Sean A. Irvine, Apr 05 2010

Extensions

Better definition from Michael Albert, Oct 24 2008
More terms from Sean A. Irvine, Apr 05 2010