A000334 Number of 4-dimensional partitions of n.
1, 5, 15, 45, 120, 326, 835, 2145, 5345, 13220, 32068, 76965, 181975, 425490, 982615, 2245444, 5077090, 11371250, 25235790, 55536870, 121250185, 262769080, 565502405, 1209096875, 2569270050, 5427963902, 11404408525, 23836421895, 49573316740, 102610460240
Offset: 1
Examples
From _Gus Wiseman_, Jan 23 2019: (Start) The a(1) = 1 through a(3) = 15 four-dimensional partitions, represented as chains of chains of chains of integer partitions: (((1))) (((2))) (((3))) (((11))) (((21))) (((1)(1))) (((111))) (((1))((1))) (((2)(1))) (((1)))(((1))) (((11)(1))) (((2))((1))) (((1)(1)(1))) (((11))((1))) (((2)))(((1))) (((1)(1))((1))) (((11)))(((1))) (((1))((1))((1))) (((1)(1)))(((1))) (((1))((1)))(((1))) (((1)))(((1)))(((1))) (End)
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Suresh Govindarajan, Table of n, a(n) for n = 1..40
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy], DOI
- S. Balakrishnan, S. Govindarajan and N. S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011.
- S. P. Naveen, On The Asymptotics of Some Counting Problems in Physics, Thesis, Bachelor of Technology, Department of Physics, Indian Institute of Technology, Madras, May 2011.
Crossrefs
Programs
-
Mathematica
trans[x_]:=If[x=={},{},Transpose[x]]; levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]]; Table[Length[levptns[n,4]],{n,8}] (* Gus Wiseman, Jan 24 2019 *)
Extensions
More terms from Sean A. Irvine, Nov 14 2010