cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000334 Number of 4-dimensional partitions of n.

Original entry on oeis.org

1, 5, 15, 45, 120, 326, 835, 2145, 5345, 13220, 32068, 76965, 181975, 425490, 982615, 2245444, 5077090, 11371250, 25235790, 55536870, 121250185, 262769080, 565502405, 1209096875, 2569270050, 5427963902, 11404408525, 23836421895, 49573316740, 102610460240
Offset: 1

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Jan 23 2019: (Start)
The a(1) = 1 through a(3) = 15 four-dimensional partitions, represented as chains of chains of chains of integer partitions:
  (((1)))  (((2)))         (((3)))
           (((11)))        (((21)))
           (((1)(1)))      (((111)))
           (((1))((1)))    (((2)(1)))
           (((1)))(((1)))  (((11)(1)))
                           (((2))((1)))
                           (((1)(1)(1)))
                           (((11))((1)))
                           (((2)))(((1)))
                           (((1)(1))((1)))
                           (((11)))(((1)))
                           (((1))((1))((1)))
                           (((1)(1)))(((1)))
                           (((1))((1)))(((1)))
                           (((1)))(((1)))(((1)))
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000219 (2-dim), A000293 (3-dim), A000390 (5-dim), A096751 (k-dim).

Programs

  • Mathematica
    trans[x_]:=If[x=={},{},Transpose[x]];
    levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
    Table[Length[levptns[n,4]],{n,8}] (* Gus Wiseman, Jan 24 2019 *)

Extensions

More terms from Sean A. Irvine, Nov 14 2010