A000341 Number of ways to pair up {1..2n} so sum of each pair is prime.
1, 2, 3, 6, 26, 96, 210, 1106, 3759, 12577, 74072, 423884, 2333828, 16736611, 99838851, 630091746, 4525325020, 38848875650, 342245714017, 3335164762941, 31315463942337, 241353231085002, 2350106537365732, 17903852593938447, 158065352670318614, 1815064841856534244, 20577063085601738871, 276081763499377227299
Offset: 1
Examples
For n=4, there are 6 ways to pair up {1, 2, 3, 4, 5, 6, 7, 8} so that each pair sums to a prime: 1+2, 3+4, 5+8, 6+7 1+2, 3+8, 4+7, 5+6 1+4, 2+3, 5+8, 6+7 1+4, 2+5, 3+8, 6+7 1+6, 2+3, 4+7, 5+8 1+6, 2+5, 3+8, 4+7 Therefore a(4) = 6. - _Michael B. Porter_, Jul 19 2016
Links
- Martin Fuller, Table of n, a(n) for n = 1..36
- L. E. Greenfield and S. J. Greenfield, Some Problems of Combinatorial Number Theory Related to Bertrand's Postulate, J. Integer Sequences, 1998, #98.1.2.
Programs
-
Maple
f:= proc(n) local M; M:= Matrix(n,n,(i,j) -> `if`(isprime(2*i+2*j-1),1,0)); LinearAlgebra:-Permanent(M) end proc: map(f, [$1..20]); # Robert Israel, Jul 19 2016
-
Mathematica
a[n_] := Permanent[ Array[ Boole[ PrimeQ[2*#1 + 2*#2 - 1]] & , {n, n}]]; Table[an = a[n]; Print[an]; an, {n, 1, 20}] (* Jean-François Alcover, Oct 21 2011, after T. D. Noe, updated Feb 07 2016 *)
-
PARI
permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;nc=0;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;nc+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p) for(n=1,24,a=matrix(n,n,i,j,isprime(2*(i+j)-1));print1(permRWNb(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
-
PARI
a(n)=matpermanent(matrix(n,n,i,j,isprime(2*(i+j)-1))); \\ Martin Fuller, Sep 22 2023
Formula
a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether 2i+2j-1 is prime or composite, respectively. - T. D. Noe, Feb 10 2007
Extensions
More terms from David W. Wilson
More terms from T. D. Noe, Feb 10 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
More terms from Sean A. Irvine, Nov 14 2010