A000348 Number of ways to pair up {1^2, 2^2, ..., (2n)^2 } so sum of each pair is prime.
1, 1, 2, 4, 12, 9, 72, 160, 428, 2434, 3011, 10337, 126962, 264182, 783550, 5004266, 34340141, 176302123, 1188146567, 4457147441, 7845512385, 132253267889, 1004345333251, 3865703506342, 40719018858150, 213982561376958, 1266218151414286, 10976172953868304, 59767467676582641, 512279001476451101, 6189067229056357433
Offset: 1
Links
- B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
- L. E. Greenfield and S. J. Greenfield, Some Problems of Combinatorial Number Theory Related to Bertrand's Postulate, J. Integer Sequences, 1998, #98.1.2.
Crossrefs
Cf. A000341.
Programs
-
Mathematica
a[n_] := Permanent[Table[Boole[PrimeQ[(2*i)^2 + (2*j - 1)^2]], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 22}] (* Jean-François Alcover, Jan 06 2016, after T. D. Noe *)
-
PARI
permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;nc=0;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;nc+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p) for(n=1,24,a=matrix(n,n,i,j,isprime((2*i)^2+(2*j-1)^2));print1(permRWNb(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
Formula
a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether (2i)^2+(2j-1)^2 is prime or composite, respectively. - T. D. Noe, Feb 10 2007
Extensions
a(11)-a(16) from David W. Wilson
a(17)-a(22) from T. D. Noe, Feb 10 2007
a(23)-a(24) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
More terms from Sean A. Irvine, Nov 14 2010