cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000348 Number of ways to pair up {1^2, 2^2, ..., (2n)^2 } so sum of each pair is prime.

Original entry on oeis.org

1, 1, 2, 4, 12, 9, 72, 160, 428, 2434, 3011, 10337, 126962, 264182, 783550, 5004266, 34340141, 176302123, 1188146567, 4457147441, 7845512385, 132253267889, 1004345333251, 3865703506342, 40719018858150, 213982561376958, 1266218151414286, 10976172953868304, 59767467676582641, 512279001476451101, 6189067229056357433
Offset: 1

Views

Author

S. J. Greenfield (greenfie(AT)math.rutgers.edu)

Keywords

Crossrefs

Cf. A000341.

Programs

  • Mathematica
    a[n_] := Permanent[Table[Boole[PrimeQ[(2*i)^2 + (2*j - 1)^2]], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 22}] (* Jean-François Alcover, Jan 06 2016, after T. D. Noe *)
  • PARI
    permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;nc=0;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;nc+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p)
    for(n=1,24,a=matrix(n,n,i,j,isprime((2*i)^2+(2*j-1)^2));print1(permRWNb(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007

Formula

a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether (2i)^2+(2j-1)^2 is prime or composite, respectively. - T. D. Noe, Feb 10 2007

Extensions

a(11)-a(16) from David W. Wilson
a(17)-a(22) from T. D. Noe, Feb 10 2007
a(23)-a(24) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
More terms from Sean A. Irvine, Nov 14 2010