cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000363 Number of permutations of [n] with exactly 2 increasing runs of length at least 2.

Original entry on oeis.org

5, 61, 479, 3111, 18270, 101166, 540242, 2819266, 14494859, 73802835, 373398489, 1881341265, 9453340172, 47417364268, 237571096820, 1189405165908, 5951965440609, 29775517732665, 148927275340835, 744793282001995
Offset: 4

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Contribution from Johannes W. Meijer, May 24 2009: (Start)
The a(n) sequence equals the third left hand column of A008971.
The a(2*n) sequence equals the third left hand column of A160486.
(End)

Programs

  • Magma
    [(5^n-(2*n-1)*3^n+2*n^2-2*n-2)/16: n in [4..30]]; // Vincenzo Librandi, May 03 2013
  • Mathematica
    Table[(5^n-(2*n-1)*3^n+2*n^2-2*n-2)/16,{n,4,20}] (* Vaclav Kotesovec, Nov 19 2012 *)

Formula

From Vaclav Kotesovec, Nov 19 2012: (Start)
a(n) = (5^n-(2*n-1)*3^n+2*n^2-2*n-2)/16.
G.f.: -x^4*(9*x-5)/((x-1)^3*(3*x-1)^2*(5*x-1)). (End)
E.g.f.: exp(x)*(exp(4*x) + exp(2*x)*(1 - 6*x) - 2*(1 - x^2))/16. - Stefano Spezia, Nov 09 2024

Extensions

More terms and better definition from Jon E. Schoenfield, Mar 25 2010