A000390 Number of 5-dimensional partitions of n.
1, 6, 21, 71, 216, 657, 1907, 5507, 15522, 43352, 119140, 323946, 869476, 2308071, 6056581, 15724170, 40393693, 102736274, 258790004, 645968054, 1598460229, 3923114261, 9554122089, 23098084695, 55458417125, 132293945737, 313657570114
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Suresh Govindarajan, Table of n, a(n) for n = 1..30
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]DOI
- S. Balakrishnan, S. Govindarajan and N. S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011.
- S. P. Naveen, On The Asymptotics of Some Counting Problems in Physics, Thesis, Bachelor of Technology, Department of Physics, Indian Institute of Technology, Madras, May 2011.
Crossrefs
Programs
-
Mathematica
trans[x_] := If[x == {}, {}, Transpose[x]]; levptns[n_, k_] := If[k == 1, IntegerPartitions[n], Join @@ Table[ Select[Tuples[levptns[#, k - 1] & /@ y], And @@ (GreaterEqual @@@ trans[Flatten /@ (PadRight[#, ConstantArray[n, k - 1]] & /@ #)]) &], {y, IntegerPartitions[n]}]]; Table[levptns[n, 5] // Length, {n, 1, 7}] (* Robert P. P. McKone, Dec 18 2020 *)
Extensions
More terms from Sean A. Irvine, Nov 14 2010
More terms found by Suresh Govindarajan, May 30 2011