A000391 Euler transform of A000332.
1, 6, 21, 71, 216, 672, 1982, 5817, 16582, 46633, 128704, 350665, 941715, 2499640, 6557378, 17024095, 43756166, 111433472, 281303882, 704320180, 1749727370, 4314842893, 10565857064, 25700414815, 62115621317, 149214574760, 356354881511, 846292135184
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..500
- A. O. L. Atkin, P. Bratley, I. G. McDonald, and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
- A. O. L. Atkin, P. Bratley, I. G. McDonald, and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
- Srivatsan Balakrishnan, Suresh Govindarajan, and Naveen S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011, p.21.
- N. J. A. Sloane, Transforms
Programs
-
Maple
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+3,4)): seq(a(n), n=1..30); # Alois P. Heinz, Sep 08 2008
-
Mathematica
nn = 50; b = Table[Binomial[n, 4], {n, 4, nn + 4}]; Rest[CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x]] (* T. D. Noe, Jun 21 2012 *) nmax=50; Rest[CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)/24),{k,1,nmax}],{x,0,nmax}],x]] (* Vaclav Kotesovec, Mar 11 2015 *)
-
PARI
a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^5/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */
Formula
a(n) ~ Pi^(3/160) / (2 * 3^(243/320) * 7^(83/960) * n^(563/960)) * exp(Zeta'(-1)/4 - 143 * Zeta(3) / (240 * Pi^2) + 53461 * Zeta(5) / (3200 * Pi^4) + 107163 * Zeta(3) * Zeta(5)^2 / (2*Pi^12) - 24754653 * Zeta(5)^3 / (10*Pi^14) + 413420708484 * Zeta(5)^5 / (5*Pi^24) + Zeta'(-3)/4 + (-847 * 7^(1/6) * Pi / (19200 * sqrt(3)) - 189 * sqrt(3) * 7^(1/6) * Zeta(3) * Zeta(5) / (2*Pi^7) + 305613 * sqrt(3) * 7^(1/6) * Zeta(5)^2 / (80*Pi^9) - 614365479 * sqrt(3) * 7^(1/6) * Zeta(5)^4 / (4*Pi^19)) * n^(1/6) + (3 * 7^(1/3) * Zeta(3) / (4*Pi^2) - 693 * 7^(1/3) * Zeta(5) / (40*Pi^4) + 857304 * 7^(1/3) * Zeta(5)^3 / Pi^14) * n^(1/3) + (11 * sqrt(7/3) * Pi / 120 - 1701 * sqrt(21) * Zeta(5)^2 / Pi^9) * sqrt(n) + 27 * 7^(2/3) * Zeta(5) / (2*Pi^4) * n^(2/3) + 2*sqrt(3)*Pi / (5*7^(1/6)) * n^(5/6)). - Vaclav Kotesovec, Mar 12 2015