A000402 Number of permutations of [n] in which the longest increasing run has length 3.
0, 0, 1, 6, 41, 293, 2309, 19975, 189524, 1960041, 21993884, 266361634, 3465832370, 48245601976, 715756932697, 11277786883720, 188135296651083, 3313338641692957, 61444453534759589, 1196988740015236617, 24442368179977776766, 522124104504306695929
Offset: 1
Keywords
Examples
a(4)=6 because we have (124)3, (134)2, (234)1, 4(123), 3(124) and 2(134), where the parentheses surround increasing runs of length 3.
References
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261, Table 7.4.1. (Values for n>=16 are incorrect.)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..452 (first 100 terms from Max Alekseyev)
- Max A. Alekseyev, On the number of permutations with bounded runs length, arXiv preprint arXiv:1205.4581 [math.CO], 2012-2013. - From _N. J. A. Sloane_, Oct 23 2012
Crossrefs
Programs
-
Mathematica
b[u_, o_, t_, k_] := b[u, o, t, k] = If[t == k, (u + o)!, If[Max[t, u] + o < k, 0, Sum[b[u + j - 1, o - j, t + 1, k], {j, 1, o}] + Sum[b[u - j, o + j - 1, 1, k], {j, 1, u}]]]; T[n_, k_] := b[0, n, 0, k] - b[0, n, 0, k + 1]; a[n_] := T[n, 3]; Array[a, 30] (* Jean-François Alcover, Jul 19 2018, after Alois P. Heinz *)
Extensions
Better description from Emeric Deutsch, May 08 2004
Terms a(16), a(17) are corrected and further terms added by Max Alekseyev, May 20 2012