cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000411 Generalized tangent numbers d(6,n).

Original entry on oeis.org

6, 522, 152166, 93241002, 97949265606, 157201459863882, 357802951084619046, 1096291279711115037162, 4350684698032741048452486, 21709332137467778453687752842, 133032729004732721625426681085926, 982136301747914281420205946546842922, 8597768767880274820173388403096814519366
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    egf := sec(6*x)*(sin(x) + sin(5*x)): ser := series(egf, x, 24):
    seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..12); # Peter Luschny, Nov 21 2021
  • Mathematica
    nmax = 15; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k + 1]/(2 k + 1)^s, {k, 0, km}]; d[a_ /; a > 1, n_, km_] := (2 n - 1)! L[-a, 2 n, km] (2 a/Pi)^(2 n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[6, n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2 km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000411 = dd[km] (* Jean-François Alcover, Feb 08 2016 *)
  • Sage
    t = PowerSeriesRing(QQ, 't', default_prec=24).gen()
    f = 2 * sin(3 * t) / (2 * cos(4 * t) - 1)
    f.egf_to_ogf().list()[1::2] # F. Chapoton, Oct 06 2020

Formula

a(n) = (2*n-1)! * [x^(2*n-1)] 2*sin(3*x) / (2*cos(4*x) - 1). - F. Chapoton, Oct 06 2020
a(n) = (2*n-1)!*[x^(2*n-1)](sec(6*x)*(sin(x) + sin(5*x))). - Peter Luschny, Nov 21 2021

Extensions

a(10)-a(12) from Lars Blomberg, Sep 07 2015