A000424 Differences of reciprocals of unity.
7, 85, 1660, 48076, 1942416, 104587344, 7245893376, 628308907776, 66687811660800, 8506654697548800, 1284292319599411200, 226530955276874956800, 46165213716463676620800, 10765453901922078105600000, 2848453606917036402278400000, 848800150518516674081587200000
Offset: 1
Keywords
References
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Mircea Merca, Some experiments with complete and elementary symmetric functions, Periodica Mathematica Hungarica, 69 (2014), 182-189.
Programs
-
Mathematica
T[n_, k_] := If[k <= n, (n-k+2)!^k*Sum[(-1)^(j+1)*Binomial[n-k+2, j]/j^k, {j, 1, n-k+2}], 0]; a[n_] := T[n+1, 2]; Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Feb 08 2016, after Alois P. Heinz in A008969 *)
Formula
From Vaclav Kotesovec, Oct 23 2017: (Start)
a(n) = (3*n^2 + 3*n + 1)*a(n-1) - 3*n^4*a(n-2) + (n-1)^3*n^3*a(n-3).
a(n) ~ Pi * log(n)^2 * n^(2*n + 3) * (1 + 2*gamma/log(n) + (gamma^2 + Pi^2/6) / log(n)^2) / exp(2*n), where gamma is the Euler-Mascheroni constant (A001620). (End)
Extensions
More terms from Vaclav Kotesovec, Oct 23 2017