A008969
Triangle of differences of reciprocals of unity.
Original entry on oeis.org
1, 1, 3, 1, 11, 7, 1, 50, 85, 15, 1, 274, 1660, 575, 31, 1, 1764, 48076, 46760, 3661, 63, 1, 13068, 1942416, 6998824, 1217776, 22631, 127, 1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255, 1, 1026576, 7245893376, 673781602752, 1413470290176, 117550462624, 747497920, 833375, 511
Offset: 1
Triangle T(n,k) begins:
1;
1, 3;
1, 11, 7;
1, 50, 85, 15;
1, 274, 1660, 575, 31;
1, 1764, 48076, 46760, 3661, 63;
1, 13068, 1942416, 6998824, 1217776, 22631, 127;
1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255;
...
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.
-
T:= (n,k)-> `if`(k<=n, (n-k+2)!^k *
add((-1)^(j+1)*binomial(n-k+2, j)/ j^k, j=1..n-k+2), 0):
seq(seq(T(n,k), k=0..n), n=0..7); # Alois P. Heinz, Sep 05 2008
-
T[n_, k_] := If[k <= n, (n-k+2)!^k*Sum[(-1)^(j+1)*Binomial[n-k+2, j]/j^k, {j, 1, n-k+2}], 0]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 7}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
A001236
Differences of reciprocals of unity.
Original entry on oeis.org
15, 575, 46760, 6998824, 1744835904, 673781602752, 381495483224064, 303443622431870976, 327643295527342080000, 466962174913357393920000, 858175477913267353681920000, 1993920215002599923346309120000, 5758788816015998806424467537920000
Offset: 1
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a:= n-> (n+1)!^3* add((-1)^(k+1) *binomial(n+1, k)/ k^3, k=1..n+1):
seq (a(n), n=1..15); # Alois P. Heinz, Sep 05 2008
-
h = HarmonicNumber; a[n_] := ((n+1)!^3/6)*(h[n+1, 1]^3 + 3*h[n+1, 1]*h[n+1, 2] + 2*h[n+1, 3]); Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Feb 26 2015, after Vladeta Jovovic *)
A060237
a(n) = n!^2 * Sum_{m=1..n}( Sum_{k=1..m} 1/(k*m) ).
Original entry on oeis.org
1, 7, 85, 1660, 48076, 1942416, 104587344, 7245893376, 628308907776, 66687811660800, 8506654697548800, 1284292319599411200, 226530955276874956800, 46165213716463676620800
Offset: 1
a(2) = 2!^2 *(1/(1*1) + 1/(1*2) + 1/(2*2)) = 7.
-
[Factorial(n)^2*(&+[(-1)^(k+1)*Binomial(n,k)/k^2: k in [1..n]]): n in [1..30]]; // G. C. Greubel, Aug 30 2018
-
Table[n!^2*Sum[(-1)^(k+1)*Binomial[n,k]/k^2, {k,1,n}], {n,1,30}] (* or *) Table[n!^2*Sum[Sum[1/(k*m), {k,1,m}], {m,1,n}], {n,1,30}](* G. C. Greubel, Aug 30 2018 *)
-
for(n=1,30, print1(n!^2*sum(k=1,n, (-1)^(k+1)*binomial(n,k)/k^2), ", ")) \\ G. C. Greubel, Aug 30 2018
A294117
a(n) = (n!)^2 * Sum_{k=1..n} binomial(n,k) / k^2.
Original entry on oeis.org
1, 9, 139, 3460, 129076, 6831216, 492314544, 46810296576, 5724123883776, 881047053849600, 167511790501401600, 38685942660873830400, 10689310289146278297600, 3485920800452969462169600, 1325434521073620201431040000, 581241452210335678204477440000
Offset: 1
-
I:=[1,9,139,3460]; [n le 4 select I[n] else (5*n^2- 7*n+3)*Self(n-1)-(n-1)^2*(9*n^2-24*n+17)*Self(n-2)+(n-2)^3*(n-1)^2*(7*n-13)*Self(n-3)-2*(n-3)^3*(n-2)^3*(n-1)^2*Self(n-4): n in [1..16]]; // Vincenzo Librandi, Oct 24 2017
-
f:= gfun:-rectoproc({a(n) = (5*n^2 - 7*n + 3)*a(n-1) - (n-1)^2*(9*n^2 - 24*n + 17)*a(n-2) + (n-2)^3*(n-1)^2*(7*n - 13)*a(n-3) - 2*(n-3)^3*(n-2)^3*(n-1)^2*a(n-4),a(1)=1,a(2)=9,a(3)=139,a(4)=3460},a(n),remember):
map(f, [$1..20]); # Robert Israel, Oct 23 2017
-
Table[n!^2*Sum[Binomial[n, k]/k^2, {k, 1, n}], {n, 1, 20}]
Table[n!^2*n*HypergeometricPFQ[{1, 1, 1, 1 - n}, {2, 2, 2}, -1], {n, 1, 20}]
Showing 1-4 of 4 results.