cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000424 Differences of reciprocals of unity.

Original entry on oeis.org

7, 85, 1660, 48076, 1942416, 104587344, 7245893376, 628308907776, 66687811660800, 8506654697548800, 1284292319599411200, 226530955276874956800, 46165213716463676620800, 10765453901922078105600000, 2848453606917036402278400000, 848800150518516674081587200000
Offset: 1

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A060237.
Column 2 in triangle A008969.

Programs

  • Mathematica
    T[n_, k_] := If[k <= n, (n-k+2)!^k*Sum[(-1)^(j+1)*Binomial[n-k+2, j]/j^k, {j, 1, n-k+2}], 0]; a[n_] := T[n+1, 2]; Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Feb 08 2016, after Alois P. Heinz in A008969 *)

Formula

From Vaclav Kotesovec, Oct 23 2017: (Start)
a(n) = (3*n^2 + 3*n + 1)*a(n-1) - 3*n^4*a(n-2) + (n-1)^3*n^3*a(n-3).
a(n) ~ Pi * log(n)^2 * n^(2*n + 3) * (1 + 2*gamma/log(n) + (gamma^2 + Pi^2/6) / log(n)^2) / exp(2*n), where gamma is the Euler-Mascheroni constant (A001620). (End)

Extensions

More terms from Vaclav Kotesovec, Oct 23 2017

A294117 a(n) = (n!)^2 * Sum_{k=1..n} binomial(n,k) / k^2.

Original entry on oeis.org

1, 9, 139, 3460, 129076, 6831216, 492314544, 46810296576, 5724123883776, 881047053849600, 167511790501401600, 38685942660873830400, 10689310289146278297600, 3485920800452969462169600, 1325434521073620201431040000, 581241452210335678204477440000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2017

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,9,139,3460]; [n le 4 select I[n] else  (5*n^2- 7*n+3)*Self(n-1)-(n-1)^2*(9*n^2-24*n+17)*Self(n-2)+(n-2)^3*(n-1)^2*(7*n-13)*Self(n-3)-2*(n-3)^3*(n-2)^3*(n-1)^2*Self(n-4): n in [1..16]]; // Vincenzo Librandi, Oct 24 2017
  • Maple
    f:= gfun:-rectoproc({a(n) = (5*n^2 - 7*n + 3)*a(n-1) - (n-1)^2*(9*n^2 - 24*n + 17)*a(n-2) + (n-2)^3*(n-1)^2*(7*n - 13)*a(n-3) - 2*(n-3)^3*(n-2)^3*(n-1)^2*a(n-4),a(1)=1,a(2)=9,a(3)=139,a(4)=3460},a(n),remember):
    map(f, [$1..20]); # Robert Israel, Oct 23 2017
  • Mathematica
    Table[n!^2*Sum[Binomial[n, k]/k^2, {k, 1, n}], {n, 1, 20}]
    Table[n!^2*n*HypergeometricPFQ[{1, 1, 1, 1 - n}, {2, 2, 2}, -1], {n, 1, 20}]

Formula

a(n) = (5*n^2 - 7*n + 3)*a(n-1) - (n-1)^2*(9*n^2 - 24*n + 17)*a(n-2) + (n-2)^3*(n-1)^2*(7*n - 13)*a(n-3) - 2*(n-3)^3*(n-2)^3*(n-1)^2*a(n-4).
a(n) ~ (n!)^2 * 2^(n+2) / n^2.
Showing 1-2 of 2 results.