cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000426 Coefficients of ménage hit polynomials.

Original entry on oeis.org

0, 1, 1, 1, 8, 35, 211, 1459, 11584, 103605, 1030805, 11291237, 135015896, 1749915271, 24435107047, 365696282855, 5839492221440, 99096354764009, 1780930394412009, 33789956266629001, 674939337282352360, 14157377139256183723, 311135096550816014651
Offset: 1

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 198.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. M. Taylor, A problem on arrangements, Mess. Math., 32 (1902), 60ff.

Crossrefs

Cf. A000179, A000271. A diagonal of A058057.

Programs

  • Magma
    [0] cat [&+[(-1)^k*Factorial(2*n-k-1)*Factorial(n-k) / (Factorial(2*n-2*k)*Factorial(k-2)): k in [2..n]]: n in [2..25]]; // Vincenzo Librandi, Jun 11 2019
  • Mathematica
    Table[Sum[(-1)^k*(2*n-k-1)!*(n-k)!/((2*n-2*k)!*(k-2)!),{k,2,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 26 2012 *)

Formula

a(n) = Sum_{k=2..n} (-1)^k*(2n-k-1)!*(n-k)!/((2n-2k)!*(k-2)!).
a(n) = A000033(n)/n.
a(n) = ((2*n-5)*a(n-1) + (5*n-11)*a(n-2) + (5*n-14)*a(n-3) + (2*n-5)*a(n-4) + 2*a(n-5))/2 for n >= 6.
Shorter recurrence: (14*n-67)*a(n) = (14*n^2-95*n+137)*a(n-1) + (14*n^2-105*n+180)*a(n-2) - 24*a(n-4) + (57-10*n)*a(n-3). - Vaclav Kotesovec, Oct 26 2012
a(n) ~ 2/e^2*(n-1)!. - Vaclav Kotesovec, Oct 26 2012
a(n) = round((exp(-2)*(8*BesselK(n,2) - (4*n-10)*BesselK(n-1,2)))) for n > 6. - Mark van Hoeij, Jun 09 2019
a(n)+2*a(n+p)+a(n+2*p) is divisible by p for any prime p. - Mark van Hoeij, Jun 13 2019

Extensions

Edited by David W. Wilson, Dec 27 2007