cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000462 Numbers written in base of triangular numbers.

Original entry on oeis.org

1, 2, 10, 11, 12, 100, 101, 102, 110, 1000, 1001, 1002, 1010, 1011, 10000, 10001, 10002, 10010, 10011, 10012, 100000, 100001, 100002, 100010, 100011, 100012, 100100, 1000000, 1000001, 1000002, 1000010, 1000011, 1000012, 1000100, 1000101, 10000000, 10000001
Offset: 1

Views

Author

John Radu (Suttones(AT)aol.com)

Keywords

Comments

A003056 and A057945 give lengths and sums. - Reinhard Zumkeller, Mar 27 2011

Examples

			The digits (from right to left) have values 1, 3, 6, 10, etc. (A000217), hence a(20) = 10012 because 20 = 1*15 + 0*10 + 0*6 + 1*3 + 2*1. - _Stefano Spezia_, Apr 25 2024
		

References

  • F. Smarandache, "Properties of the numbers", Univ. of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.

Crossrefs

Programs

  • Haskell
    a000462 n = g [] n $ reverse $ takeWhile (<= n) $ tail a000217_list where
       g as 0 []     = read $ concat $ map show $ reverse as :: Integer
       g as x (t:ts) = g (a:as) r ts where (a,r) = divMod x t
    -- Reinhard Zumkeller, Mar 27 2011
  • Mathematica
    A000217[n_]:=n(n+1)/2; a[n_]:=Module[{k=0}, num=n; digits={}; k=Floor[(Sqrt[1+8num]-1)/2]; While[num>0, AppendTo[digits, Floor[num/A000217[k]]]; num=Mod[num, A000217[k]]; kold=k; k=Floor[(Sqrt[1+8num]-1)/2]; While[kStefano Spezia, Apr 25 2024 *)