A000462 Numbers written in base of triangular numbers.
1, 2, 10, 11, 12, 100, 101, 102, 110, 1000, 1001, 1002, 1010, 1011, 10000, 10001, 10002, 10010, 10011, 10012, 100000, 100001, 100002, 100010, 100011, 100012, 100100, 1000000, 1000001, 1000002, 1000010, 1000011, 1000012, 1000100, 1000101, 10000000, 10000001
Offset: 1
Examples
The digits (from right to left) have values 1, 3, 6, 10, etc. (A000217), hence a(20) = 10012 because 20 = 1*15 + 0*10 + 0*6 + 1*3 + 2*1. - _Stefano Spezia_, Apr 25 2024
References
- F. Smarandache, "Properties of the numbers", Univ. of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240.
- F. Smarandache, Sequences of Numbers Involved in Unsolved Problems.
- Eric Weisstein's World of Mathematics, Smarandache Sequences.
Programs
-
Haskell
a000462 n = g [] n $ reverse $ takeWhile (<= n) $ tail a000217_list where g as 0 [] = read $ concat $ map show $ reverse as :: Integer g as x (t:ts) = g (a:as) r ts where (a,r) = divMod x t -- Reinhard Zumkeller, Mar 27 2011
-
Mathematica
A000217[n_]:=n(n+1)/2; a[n_]:=Module[{k=0}, num=n; digits={}; k=Floor[(Sqrt[1+8num]-1)/2]; While[num>0, AppendTo[digits, Floor[num/A000217[k]]]; num=Mod[num, A000217[k]]; kold=k; k=Floor[(Sqrt[1+8num]-1)/2]; While[k
Stefano Spezia, Apr 25 2024 *)
Comments