cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000485 Number of partially labeled trees with n nodes (4 of which are labeled).

Original entry on oeis.org

16, 125, 680, 3135, 13155, 51873, 195821, 715614, 2550577, 8911942, 30640888, 103951415, 348724844, 1158722880, 3818514232, 12493703403, 40620949971, 131336770375, 422536529249, 1353341880777, 4317248276746, 13722302173753
Offset: 4

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A034799.

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-3)^4*(16-19*B(n-3)+6*B(n-3)^2)/(1-B(n-3))^5, x=0, n+1), x,n): seq(a(n), n=4..25); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-3]^4*(16-19*B[n-3] + 6*B[n-3]^2)/(1-B[n-3])^5, {x, 0, n}]; Table[a[n], {n, 4, 25}] (* Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *)

Formula

G.f.: A(x) = B(x)^4*(16-19*B(x)+6*B(x)^2)/(1-B(x))^5, where B(x) is g.f. for rooted trees with n nodes, cf. A000081.

Extensions

More terms from Vladeta Jovovic, Oct 19 2001