A000503 a(n) = floor(tan(n)).
0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -226, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -76, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -46, -1, 0, 8, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -6, -1, 0, -33, -1, 0, 9, -1, 0, 3, -2, 0, 2, -2, 0, 1, -2, -1, 1, -3, -1, 0, -6, -1, 0, -26
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- David P. Bellamy, Jeffrey C. Lagarias, Felix Lazebnik, Proposed Problem: Large Values of Tan n
- David P. Bellamy, Jeffrey C. Lagarias, Felix Lazebnik and Stephen M. Gagola, Jr., Large Values of Tangent: 10656, The American Mathematical Monthly, Vol. 106, No. 8 (Oct., 1999), pp. 782-784.
- Daniel Forgues and Jon E. Schoenfield, Discussion of A000503
- G. Whyman, N. Ohtori, E. Shulzinger, Ed. Bormashenko, Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?, Physica A: Statistical Mechanics and its Applications, 461 (2016), 595-601.
- Index entries for sequences related to Benford's law
Crossrefs
Programs
-
Magma
[Floor(Tan(n)): n in [0..80]]; // Vincenzo Librandi, Jun 13 2015
-
Maple
f := n->floor(evalf(tan(n)));
-
Mathematica
Table[Floor[Tan[n]], {n, 0, 100}] (* Stefan Steinerberger, Apr 09 2006 *)
-
PARI
a(n)=tan(n)\1 \\ Charles R Greathouse IV, Sep 04 2014
Extensions
More terms from Stefan Steinerberger, Apr 09 2006
Comments