cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000505 Eulerian numbers (Euler's triangle: column k=5 of A008292, column k=4 of A173018).

Original entry on oeis.org

1, 57, 1191, 15619, 156190, 1310354, 9738114, 66318474, 423281535, 2571742175, 15041229521, 85383238549, 473353301060, 2575022097600, 13796160184500, 73008517581444, 382493246941965, 1987497491971605, 10258045633638475
Offset: 5

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)
Number of permutations of n letters with exactly 4 descents. - Neven Juric, Jan 21 2010

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A123125 (row reversed Euler's triangle).
Cf. A000012, A000460, A000498 (columns for smaller k).

Programs

  • Magma
    [5^(n + 4) - (n + 5)*4^(n + 4) + (1/2)*(n + 4)*(n + 5)*3^(n + 4) - (1/6)*(n + 3)*(n + 4)*(n + 5)*2^(n + 4) + (1/24)*(n + 2)*(n + 3)*(n + 4)*(n + 5): n in [5..25]]; // G. C. Greubel, Oct 23 2017
  • Mathematica
    k = 5; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 19}] (* Michael De Vlieger, Aug 04 2015, after PARI at A001243 *)
    a[n_] := 5^n - 2^(n-1)*n*(n^2-1)/3 - 4^n*(n+1) + 3^n*n*(n+1)/2 + (n-2)* (n-1)*n*(n+1)/24; Table[a[n], {n, 5, 25}] (* Jean-François Alcover, Feb 09 2016 *)
  • PARI
    A(n)=5^(n+4)-(n+5)*4^(n+4)+1/2*(n+4)*(n+5)*3^(n+4)-1/6*(n+3)*(n+4)*(n+5)*2^(n+4)+1/24*(n+2)*(n+3)*(n+4)*(n+5)
    

Formula

a(n) = 5^(n + 4) - (n + 5)*4^(n + 4) + (1/2)*(n + 4)*(n + 5)*3^(n + 4) - (1/6)*(n + 3)*(n + 4)*(n + 5)*2^(n + 4) + (1/24)*(n + 2)*(n + 3)*(n + 4)*(n + 5). - Randall L Rathbun, Jan 22 2002
E.g.f.: (1/24)*exp(x)*(x^4 + 8*x^3 + 12*x^2) - 4*exp(2*x)*(2*x^3/3 + 2*x^2 + x) + 3*exp(3*x)*(9*x^2/2 + 6*x + 1) - 8*exp(4*x)*(2*x + 1) + 5*exp(5*x). - Wenjin Woan, Oct 21 2007
G.f.: (1 + 22*x - 244*x^2 + 422*x^3 + 2575*x^4 - 12012*x^5 + 17828*x^6 - 5664*x^7 - 9552*x^8 + 6912*x^9)*(x/(1-x))^5 / Product_{j=1..4} (1 - (6-j)*x)^j. See the recurrence given in an Apr 03 2017 comment on A123125. - Wolfdieter Lang, Apr 03 2017

Extensions

More terms from Christian G. Bower, May 12 2000