A000509 Size of second largest n-arc in PG(2,q), where q runs through the primes and prime powers >= 7.
6, 6, 8, 10, 12, 13, 14, 14, 17, 21, 22, 24
Offset: 1
Examples
m'(31)=22 because there are no complete n-arcs in PG(2,31) for 23<=n<=31.
Links
- Alexander A. Davydov, Giorgio Faina, Stefano Marcugini, Fernanda Pambianco, New sizes of complete arcs in PG(2,q), arXiv:1004.2817 [math.CO], April 16, 2010.
- Alexander A. Davydov, Giorgio Faina, Stefano Marcugini, Fernanda Pambianco, On sizes of complete caps in projective spaced PG(n,q) and arcs in planes PG(2,q), J. Geom. 94 (1) (2009) 31-58.
- J. W. P. Hirschfeld, Complete arcs, Discr. Math., 174 (1997), 177-184.
- J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces, J. Statist. Plann. Inference 72 (1998), no. 1-2, 355-380.
- G. Keri, Types of superregular matrices and the number of n-arcs and complete n-arcs in PG(r,q), Journal of Combinatorial Designs, Vol. 14 (2006), pp. 363-390.
Extensions
Definition clarified by G. Keri (keri(AT)sztaki.hu), Jan 03 2008
Comments