A000514 Eulerian numbers (Euler's triangle: column k=6 of A008292, column k=5 of A173018).
1, 120, 4293, 88234, 1310354, 15724248, 162512286, 1505621508, 12843262863, 102776998928, 782115518299, 5717291972382, 40457344748072, 278794377854832, 1879708669896492, 12446388300682056, 81180715002105741, 522859244868123336, 3332058336247871041
Offset: 6
References
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." ยง6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 6..1000
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Index entries for linear recurrences with constant coefficients, signature (56, -1470, 24052, -275135, 2339340, -15343384, 79518296, -330867999, 1116881584, -3077867318, 6944399940, -12825741073, 19327952588, -23608674132, 23125043824, -17872240112, 10637255232, -4697205696, 1447365888, -277447680, 24883200).
Crossrefs
Programs
-
Mathematica
k = 6; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 17}] (* Michael De Vlieger, Aug 04 2015, after PARI *)
-
PARI
A000514(n)=6^(n+6-1)+sum(i=1,6-1,(-1)^i/i!*(6-i)^(n+6-1)*prod(j=1,i,n+6+1-j))
-
PARI
x='x+O('x^50); Vec(serlaplace((1/120)*(120*exp(6*x) - 120*(1+5*x)*exp(5*x) + 480*x*(1+2*x)*exp(4*x) -540*x^2*(1+x)*exp(3*x) +80*x^3*(2+x)*exp(2*x) - x^4*(5+x)*exp(x)))) \\ G. C. Greubel, Oct 24 2017
Formula
a(n) = 6^(n+6-1) + Sum_{i=1..6-1} ((-1)^i/i!)*(6-i)^(n+6-1)*Product_{j=1..i} (n+6+1-j). - Randall L Rathbun, Jan 23 2002
E.g.f.: (1/120)*(120*exp(6*x) - 120*(1+5*x)*exp(5*x) + 480*x*(1+2*x)*exp(4*x) - 540*x^2*(1+x)*exp(3*x) + 80*x^3*(2+x)*exp(2*x) - x^4*(5+x)*exp(x)). - Wenjin Woan, Oct 25 2007 (Corrected by G. C. Greubel, Oct 24 2017)
For the general formula for the o.g.f. and e.g.f. see A123125. - Wolfdieter Lang, Apr 03 2017
Extensions
More terms from Christian G. Bower, May 12 2000
Comments