A000535 Card matching: coefficients B[n,2] of t^2 in the reduced hit polynomial A[n,n,n](t).
0, 27, 378, 4536, 48600, 489780, 4738104, 44535456, 409752432, 3708359550, 33125746500, 292779558720, 2565087894720, 22307854940280, 192788833482000, 1657111548654720, 14176605442521312, 120779466450505758, 1025230099571720676, 8674221270307971600
Offset: 1
Keywords
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Programs
-
Mathematica
a[n_] := 3*Binomial[n, 2]*Sum[Binomial[n, k+2]*Binomial[n, k]*Binomial[n-2, k], {k, 0, n-2}] + 3n^2*Sum[Binomial[n, k+1]*Binomial[n-1, k+1]*Binomial[ n-1, k], {k, 0, n-2}] (* Jean-François Alcover, Feb 09 2016 *)
-
PARI
A000535(n)=3*binomial(n,2)*sum(k=0,n-2,binomial(n,k+2)*binomial(n,k)*binomial(n-2,k))+3*n^2*sum(k=0,n-2,binomial(n,k+1)*binomial(n-1,k+1)*binomial(n-1,k)) \\ M. F. Hasler, Sep 30 2015
Formula
a(n) = 3*binomial(n, 2)*Sum_{k=0..n-2} binomial(n, k+2)*binomial(n, k)*binomial(n-2, k) + 3*n^2*Sum_{k=0..n-2} binomial(n, k+1)*binomial(n-1, k+1)*binomial(n-1, k).
a(n) = 3(n-1)*n^3 3F2(1-n, 1-n, 2-n; 2, 2; -1) + (3/4)(n-1)^2 n^2 3F2(2-n, 2-n, -n; 1, 3; -1), where 3F2 is the hypergeometric function 3F2. - Jean-François Alcover, Feb 09 2016
a(n) ~ 3^(3/2) * 2^(3*n - 2) * n / Pi. - Vaclav Kotesovec, Jun 10 2019
Extensions
More terms from Vladeta Jovovic, Apr 26 2000
More terms from Emeric Deutsch, Feb 19 2004
More explicit definition by M. F. Hasler, Sep 22 2015
Comments