cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000550 Number of trees of diameter 7.

Original entry on oeis.org

1, 3, 14, 42, 128, 334, 850, 2010, 4625, 10201, 21990, 46108, 94912, 191562, 380933, 746338, 1444676, 2763931, 5235309, 9822686, 18275648, 33734658, 61826344, 112550305, 203627610, 366267931, 655261559, 1166312530, 2066048261, 3643352362, 6397485909, 11188129665, 19491131627, 33831897511, 58519577756, 100885389220, 173368983090, 297021470421, 507378371670, 864277569606, 1468245046383, 2487774321958, 4204663810414, 7089200255686, 11924621337321, 20012746962064, 33513139512868, 56001473574091, 93387290773141, 155419866337746
Offset: 8

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A034853, A000306 (diameter 8)

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
         add(binomial(b((i-1)$2, k-1)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    g:= n-> b((n-1)$2, 3) -b((n-1)$2, 2):
    a:= n-> (add(g(i)*g(n-i), i=0..n)+`if`(n::even, g(n/2), 0))/2:
    seq(a(n), n=8..40);  # Alois P. Heinz, Feb 09 2016
  • Mathematica
    m = 50; r[x_] = (Rest @ CoefficientList[ Series[ x*Product[ (1 - x^k)^(- PartitionsP[k-1]), {k, 1, m+3}], {x, 0, m+3}], x] - PartitionsP[ Range[0, m+2]]).(x^Range[m+3]); A000550 = CoefficientList[(r[x]^2 + r[x^2])/2, x][[9 ;; m+8]] (* Jean-François Alcover, Feb 09 2016 *)

Formula

G.f.: a(x)=(r(x)^2+r(x^2))/2, where r(x) is the generating function of A000235. - Sean A. Irvine, Nov 21 2010

Extensions

More terms from Sean A. Irvine, Nov 21 2010