cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000554 Number of labeled trees of diameter 3 with n nodes.

Original entry on oeis.org

12, 60, 210, 630, 1736, 4536, 11430, 28050, 67452, 159588, 372554, 859950, 1965840, 4456176, 10026702, 22412970, 49806980, 110100060, 242220594, 530578950, 1157627352, 2516581800, 5452594550, 11777604930, 25367149836, 54492396756, 116769422490, 249644973150
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    f[n_] := n (n - 1)*StirlingS2[n - 2, 2]; Table[ f@n, {n, 4, 29}] (* Robert G. Wilson v, Jul 01 2007 *)
  • PARI
    Vec(2*x^4*(6-24*x+33*x^2-18*x^3+4*x^4)/((1-x)^3*(1-2*x)^3) + O(x^40)) \\ Colin Barker, Sep 18 2016

Formula

a(n) = n(n-1)*S2(n-2, 2) where S2(n, k) denotes the Stirling numbers of 2nd kind. - Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 19 2001
a(n) = n*(n-1)*(2^(n-3) - 1) = 2*A000217(n-1)*A000225(n-3). - Robert G. Wilson v, Jul 01 2007, corrected by Ilya Gutkovskiy, Sep 17 2016
a(n) = Sum_{k=1..n-3} binomial(n,2)*binomial(n-2,k). The sum gives the number of Prüfer sequences with exactly 2 distinct digits. - Geoffrey Critzer, Sep 17 2016
E.g.f.: (x*(exp(x)-1))^2/2. - Geoffrey Critzer, Sep 17 2016
O.g.f.: 2*x^4*(6 - 24*x + 33*x^2 - 18*x^3 + 4*x^4)/((1 - x)^3*(1 - 2*x)^3). - Ilya Gutkovskiy, Sep 17 2016
a(n) = (2^n-8)*(n-1)*n/8. - Colin Barker, Sep 18 2016

Extensions

More terms from Robert G. Wilson v, Jul 01 2007