cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000562 Number of discordant permutations.

Original entry on oeis.org

9, 95, 420, 1225, 2834, 5652, 10165, 16940, 26625, 39949, 57722, 80835, 110260, 147050, 192339, 247342, 313355, 391755, 484000, 591629, 716262, 859600, 1023425, 1209600, 1420069, 1656857, 1922070, 2217895, 2546600, 2910534, 3312127, 3753890, 4238415, 4768375, 5346524, 5975697
Offset: 4

Views

Author

Keywords

References

  • J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    [9] cat [27/8*n^4-135/4*n^3+921/8*n^2-539/4*n: n in [5..45]]; // Vincenzo Librandi, Feb 10 2016
  • Maple
    ff := n->27/8*n^4-135/4*n^3+921/8*n^2-539/4*n; seq(ff(n), n=5..40); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
    A000562:=(-9-50*z-35*z**2+15*z**3-4*z**4+2*z**5)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{9}, LinearRecurrence[{5, -10, 10, -5, 1}, {95, 420, 1225, 2834, 5652}, 40]] (* Jean-François Alcover, Feb 10 2016 *)

Formula

From Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001: (Start)
G.f.: -x^4(2x^5 - 4x^4 + 15x^3 - 35x^2 - 50x - 9) / ((1 - x)^5).
a(n) = 27/8n^4 - 135/4n^3 + 921/8n^2 - 539/4n, n>4. (End)

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001