cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000571 Number of different score sequences that are possible in an n-team round-robin tournament.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 22, 59, 167, 490, 1486, 4639, 14805, 48107, 158808, 531469, 1799659, 6157068, 21258104, 73996100, 259451116, 915695102, 3251073303, 11605141649, 41631194766, 150021775417, 542875459724, 1972050156181, 7189259574618, 26295934251565, 96478910768821, 354998461378719, 1309755903513481
Offset: 0

Views

Author

Keywords

Comments

A tournament is a complete graph with one arrow on each edge; the score of a node is its out-degree; a(n) is number of different score sequences when there are n nodes.
Also number of nonnegative integer points (p_1, p_2, ..., p_n) in polytope p_0=p_{n+1}=0, 2p_i -(p_{i+1}+p_{i-1}) <= 1, p_i >= 0, i=1, ..., n.
Also number of score sequences of length n: weakly increasing sequences a[0,1,...,n-1] where sum(j=0..k, a[j]) >= k*(k+1)/2 and sum(j=0..n-1, a[j]) = (n+1)*n/2; see example. - Joerg Arndt, Mar 29 2014

Examples

			a(3)=2, since either one node dominates [ 2,1,0 ] or each node defeats the next [ 1,1,1 ].
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 22*x^6 + 59*x^7 + 167*x^8 +...
where the logarithm begins:
log(A(x)) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 26*x^5/5 + 76*x^6/6 +...+ A145855(n)*x^n/n +...
From _Joerg Arndt_, Mar 29 2014: (Start)
The a(6) = 22 score sequences of length 6 are:
  01: [ 0 1 2 3 4 5 ]
  02: [ 0 1 2 4 4 4 ]
  03: [ 0 1 3 3 3 5 ]
  04: [ 0 1 3 3 4 4 ]
  05: [ 0 2 2 2 4 5 ]
  06: [ 0 2 2 3 3 5 ]
  07: [ 0 2 2 3 4 4 ]
  08: [ 0 2 3 3 3 4 ]
  09: [ 0 3 3 3 3 3 ]
  10: [ 1 1 1 3 4 5 ]
  11: [ 1 1 1 4 4 4 ]
  12: [ 1 1 2 2 4 5 ]
  13: [ 1 1 2 3 3 5 ]
  14: [ 1 1 2 3 4 4 ]
  15: [ 1 1 3 3 3 4 ]
  16: [ 1 2 2 2 3 5 ]
  17: [ 1 2 2 2 4 4 ]
  18: [ 1 2 2 3 3 4 ]
  19: [ 1 2 3 3 3 3 ]
  20: [ 2 2 2 2 2 5 ]
  21: [ 2 2 2 2 3 4 ]
  22: [ 2 2 2 3 3 3 ]
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 123, Problem 21.
  • P. A. MacMahon, An American tournament treated by the calculus of symmetric functions, Quart. J. Pure Appl. Math., 49 (1920), 1-36. [Gives a(0)-a(8). - N. J. A. Sloane, Jun 11 2016] Reproduced in Percy Alexander MacMahon Collected Papers, Volume I, George E. Andrews, ed., MIT Press, 1978, 308-343.
  • J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 68.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A274098 for the most likely score sequence.

Programs

  • Mathematica
    max = 40; (* b = A145855 *) b[0] = 1; b[n_] := DivisorSum[n, (-1)^(n+#)* EulerPhi[n/#]*Binomial[2*#, #]/(2*n)&]; s = Exp[Sum[b[m]*x^m/m, {m, 1, max}]] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
  • PARI
    {A145855(n)=sumdiv(n,d, (-1)^(n+d)*eulerphi(n/d)*binomial(2*d,d)/(2*n))}
    {a(n)=polcoeff(exp(sum(m=1,n,A145855(m)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Jul 17 2013

Formula

Let f_1(T, E)=1 if T=E>=0, =0 else; f_n(T, E)=0 if T-E= 2.
Riordan seems to claim that a(n) = 2*a(n-1)-a(n-2) + A046919(n), but this is not true. - N. J. A. Sloane, May 06 2012
Logarithmic derivative yields A145855, the number of n-member subsets of 1..2n-1 whose elements sum to a multiple of n. - Paul D. Hanna, Jul 17 2013
a(n) = (1/n) * Sum_{k=1..n} A145855(k) * a(n-k) for n>0 with a(0)=1. - Paul D. Hanna, Jul 17 2013
Comment from Paul K. Stockmeyer, Feb 18 2022 (Start)
There are constants c1, c2 such that
c_1*4^n/n^(5/2) < a(n) < c_2*4^n/n^(5/2).
Most of the proof appears in Winston-Kleitman (1983). The final step was completed by Kim-Pittel (2000). (End)
a(n) ~ c * 4^n / n^(5/2), where c = 0.3924780842992932228521178909875268946304664137141043398966808144665388... - Vaclav Kotesovec, Feb 21 2022

Extensions

a(11) corrected by Kenneth Winston, Aug 05 1978
More terms from David W. Wilson
Thanks to Paul K. Stockmeyer for comments. - N. J. A. Sloane, Feb 18 2022