cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000596 Central factorial numbers: A008955(n,2).

Original entry on oeis.org

4, 49, 273, 1023, 3003, 7462, 16422, 32946, 61446, 108031, 180895, 290745, 451269, 679644, 997084, 1429428, 2007768, 2769117, 3757117, 5022787, 6625311, 8632866, 11123490, 14185990, 17920890, 22441419, 27874539, 34362013, 42061513, 51147768, 61813752, 74271912
Offset: 3

Views

Author

Keywords

Comments

a(n) is the sum of the products of each unique pair of elements of the set {1, 4, 9, 16, ... , (n-1)^2} (a(3) = 1*4, a(4) = 1*4 + 1*9 + 4*9, a(5) = 1*4 + 1*9 + 1*16 + 4*9 + 4*16 + 9*16, etc.) - Jeffreylee R. Snow, Sep 23 2013

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of triangle A008955.
Cf. A000290 (squares), A000330 (sum of squares), A000597 (order 3).

Programs

  • Maple
    A000596:=-(4+21*z+14*z**2+z**3)/(z-1)**7; # conjectured by Simon Plouffe in his 1992 dissertation
    seq(stirling1(n,n-2)^2-2*stirling1(n,n-3)*stirling1(n,n-1)+2*stirling1(n,n-4),n=0..50); # Mircea Merca, Apr 03 2012
  • Mathematica
    f[k_] := k^2; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 32}]  (* A000596 *)
    (* Clark Kimberling, Dec 31 2011 *)
    a[n_] := 1/360 * n * (n - 1) * (n - 2) * (2n - 1) * (2n - 3) * (5n + 1);Table[a[n],{n,3,34}] (* James C. McMahon, Dec 05 2023 *)
  • PARI
    {a(n) = n*(n-1)*(n-2)*(2*n-1)*(2*n-3)*(5*n+1)/360}; \\ Roudy El Haddad, Feb 17 2022

Formula

a(n) = (1/360)*n*(n-1)*(n-2)*(2*n-1)*(2*n-3)*(5*n+1).
a(n+1/2) = (1/16)*A001823(n).
a(n) = s(n,n-2)^2-2*s(n,n-3)*s(n,n-1)+2*s(n,n-4), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
From Roudy El Haddad, Feb 17 2022: (Start)
a(n) = Sum_{0 < i < j < n} (i*j)^2.
a(n) = binomial(2n,5)*(5*n+1)/4!. (End)

Extensions

Minor edits by Vaclav Kotesovec, Feb 23 2015