cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000597 Central factorial numbers: A008955(n,3).

Original entry on oeis.org

36, 820, 7645, 44473, 191620, 669188, 1999370, 5293970, 12728936, 28285400, 58856655, 115842675, 217378200, 391367064, 679524340, 1142659012, 1867463260, 2975110060, 4631998657, 7063027565, 10567817084, 15540347900, 22492529150, 32082258390, 45146587200
Offset: 4

Views

Author

Keywords

Comments

a(n) is the sum of all products of three distinct squares of positive integers up to n, i.e., the sum of all products of three distinct elements from the set of squares {1^2, ..., (n-1)^2}. - Roudy El Haddad, Feb 17 2022

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of triangle A008955.
Cf. A000290 (squares), A000330 (sum of squares), A000596 (for two squares).
Cf. A001303 (for power 1).

Programs

  • Maple
    1/(-1+z)^10*(z^5+75*z^4+603*z^3+1065*z^2+460*z+36);
    seq(stirling1(n,n-3)^2-2*stirling1(n,n-4)*stirling1(n,n-2)+2*stirling1(n,n-5)*stirling1(n,n-1)+2*stirling1(n,n-6),n=0..30); # Mircea Merca, Apr 03 2012
  • Mathematica
    CoefficientList[Series[(x^5 + 75*x^4 + 603*x^3 + 1065*x^2 + 460*x + 36)/(1-x)^10, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 23 2015 *)
    LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {36, 820, 7645, 44473, 191620, 669188, 1999370, 5293970, 12728936, 28285400}, 40] (* Vincenzo Librandi, Aug 07 2017 *)
  • PARI
    {a(n) = (n-1)*(n-2)*(n-3)*(n)*(2*n-1)*(2*n-3)*(2*n-5)*(35*n^2+21*n+4)/45360}; \\ Roudy El Haddad, Feb 17 2022

Formula

O.g.f.: x^4 * (x^5 + 75*x^4 + 603*x^3 + 1065*x^2 + 460*x + 36) / (1-x)^10.
a(n) = s(n,n-3)^2-2*s(n,n-4)*s(n,n-2)+2*s(n,n-5)*s(n,n-1)+2*s(n,n-6), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
From Roudy El Haddad, Feb 17 2022: (Start)
a(n) = Sum_{0 < i < j < k < n} (i*j*k)^2.
a(n) = (n - 1)*(n - 2)*(n - 3)*n*(2*n-1)*(2*n - 3)*(2*n - 5)*(35*n^2 + 21*n + 4)/45360.
a(n) = (1/(9!*2))*((2*n)!/(2*n-7)!)*(35*n^2 + 21*n + 4).
a(n) = binomial(2*n,7)*(35*n^2 + 21*n + 4)/144. (End)