A000628 Number of n-node unrooted steric quartic trees; number of n-carbon alkanes C(n)H(2n+2) taking stereoisomers into account.
1, 1, 1, 1, 2, 3, 5, 11, 24, 55, 136, 345, 900, 2412, 6563, 18127, 50699, 143255, 408429, 1173770, 3396844, 9892302, 28972080, 85289390, 252260276, 749329719, 2234695030, 6688893605, 20089296554, 60526543480, 182896187256, 554188210352, 1683557607211, 5126819371356, 15647855317080, 47862049187447, 146691564302648, 450451875783866, 1385724615285949
Offset: 0
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
- R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281.
- J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Charles M. Blair and Henry R. Henze, The number of stereoisomeric and non-stereoisomeric paraffin hydrocarbons, J. Amer. Chem. Soc., 54 (1932), 1538-1545.
- Charles M. Blair and Henry R. Henze, The number of stereoisomeric and non-stereoisomeric paraffin hydrocarbons, J. Amer. Chem. Soc., 54 (4) (1932), 1538-1545. (Annotated scanned copy)
- L. Bytautats and D. J. Klein, Alkane Isomer Combinatorics: Stereostructure enumeration and graph-invariant and molecular-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803-818, Table 1.
- Lorentz Jäntschi and Lavinia-Lorena Pruteanu, Geometry of C_32 cyclic polyyne and some of its clusters, Carpathian J. Math. (2025) Vol. 41, No. 2, 371-391. See p. 371.
- Pierre Leroux and Brahim Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992.
- Pierre Leroux and Brahim Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
- R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 44.
- R. W. Robinson, F. Harary and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.
- R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Crossrefs
Programs
-
Maple
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 0 to 60 do s[n+1/4]:=0 od:for n from 0 to 60 do s[n+1/2]:=0 od:for n from 0 to 60 do s[n+3/4]:=0 od:s[ -1]:=0:for n from 1 to 50 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k],k=0..n-j),j=1..n))/n od:for n from 0 to 50 do q[n]:=sum(s[i]*s[n-i],i=0..n) od:for n from 0 to 50 do q[n-1/2]:=0 od:for n from 0 to 40 do f:=n->(3*s[n]+2*s[n/2]+q[(n-1)/2]-q[n]+2*sum(s[j]*s[n-3*j-1],j=0..n/3))/4 od:seq(f(n),n=0..38); # the formulas for s[n+1] and f(n) are from eq.(4) and (12), respectively, of the Robinson et al. paper; s[n]=A000625(n), f(n)=A000628(n); q[n] is the convolution of s[n] with itself; # Emeric Deutsch
-
Mathematica
max = 40; s[0] = s[1] = 1; s[] = 0; For[n=1, n <= max, n++, s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n]; For[n=0, n <= max, n++, q[n] = Sum[s[i]*s[n-i], {i, 0, n}]]; For[n=0, n <= max, n++, q[n-1/2]=0]; f[n] := (3*s[n] + 2*s[n/2] + q[(n-1)/2] - q[n] + 2*Sum[s[j]*s[n-3*j-1], {j, 0, n/3}])/4; Table[f[n], {n, 0, max}] (* Jean-François Alcover, Dec 29 2014, after Emeric Deutsch *)
Formula
Extensions
Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003
More terms from Emeric Deutsch, May 16 2004
Comments