cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A000598 Number of rooted ternary trees with n nodes; number of n-carbon alkyl radicals C(n)H(2n+1) ignoring stereoisomers.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 39, 89, 211, 507, 1238, 3057, 7639, 19241, 48865, 124906, 321198, 830219, 2156010, 5622109, 14715813, 38649152, 101821927, 269010485, 712566567, 1891993344, 5034704828, 13425117806, 35866550869, 95991365288, 257332864506, 690928354105
Offset: 0

Views

Author

Keywords

Comments

Number of unlabeled rooted trees in which each node has out-degree <= 3.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A000625 for the analogous sequence with stereoisomers counted.
In alkanes every carbon has valence exactly 4 and every hydrogen has valence exactly 1. But the trees considered here are just the carbon "skeletons" (with all the hydrogen atoms stripped off) so now each carbon bonds to 1 to 4 other carbons. The out-degree is then <= 3.
Other descriptions of this sequence: quartic planted trees with n nodes; ternary rooted trees with n nodes and height at most 3.
The number of aliphatic amino acids with n carbon atoms in the side chain, and no rings or double bonds, has the same growth as this sequence. - Konrad Gruetzmann, Aug 13 2012

Examples

			From _Joerg Arndt_, Feb 25 2017: (Start)
The a(5) = 8 rooted trees with 5 nodes and out-degrees <= 3 are:
:         level sequence    out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 4 ]    [ 1 1 1 1 . ]
:  O--o--o--o--o
:
:     2:  [ 0 1 2 3 3 ]    [ 1 1 2 . . ]
:  O--o--o--o
:        .--o
:
:     3:  [ 0 1 2 3 2 ]    [ 1 2 1 . . ]
:  O--o--o--o
:     .--o
:
:     4:  [ 0 1 2 3 1 ]    [ 2 1 1 . . ]
:  O--o--o--o
:  .--o
:
:     5:  [ 0 1 2 2 2 ]    [ 1 3 . . . ]
:  O--o--o
:     .--o
:     .--o
:
:     6:  [ 0 1 2 2 1 ]    [ 2 2 . . . ]
:  O--o--o
:     .--o
:  .--o
:
:     7:  [ 0 1 2 1 2 ]    [ 2 1 . 1 . ]
:  O--o--o
:  .--o--o
:
:     8:  [ 0 1 2 1 1 ]    [ 3 1 . . . ]
:  O--o--o
:  .--o
:  .--o
(End)
		

References

  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 62 (quoting Cayley, who is wrong).
  • A. Cayley, On the mathematical theory of isomers, Phil. Mag. vol. 67 (1874), 444-447 (a(6) is wrong).
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.397.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.
  • Handbook of Combinatorics, North-Holland '95, p. 1963.
  • Knop, Mueller, Szymanski and Trinajstich, Computer generation of certain classes of molecules.
  • D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920.
  • G. Polya, Mathematical and Plausible Reasoning, Vol. 1 Prob. 4 pp. 85; 233.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2,G000598)*G000598/2+subs(z=z^3,G000598)/3)+O(z^(N+1)),z,N+1): t[ i ] := G000598: i := i+1: od: A000598 := n->coeff(G000598,z,n);
    # Another Maple program for g.f. G000598:
    G000598 := 1; f := proc(n) global G000598; coeff(series(1+(1/6)*x*(G000598^3+3*G000598*subs(x=x^2,G000598)+2*subs(x=x^3,G000598)),x, n+1),x,n); end; for n from 1 to 50 do G000598 := series(G000598+f(n)*x^n,x,n+1); od; G000598;
    spec := [S, {Z=Atom, S=Union(Z, Prod(Z, Set(S, card=3)))}, unlabeled]: [seq(combstruct[count](spec, size=n), n=0..20)];
  • Mathematica
    m = 45; Clear[f]; f[1, x_] := 1+x; f[n_, x_] := f[n, x] = Expand[1+x*(f[n-1, x]^3/6 + f[n-1, x^2]*f[n-1, x]/2 + f[n-1, x^3]/3)][[1 ;; n]]; Do[f[n, x], {n, 2, m}]; CoefficientList[f[m, x], x]
    (* second program (after N. J. A. Sloane): *)
    m = 45; gf[] = 0; Do[gf[z] = 1 + z*(gf[z]^3/6 + gf[z^2]*gf[z]/2 + gf[z^3]/3) + O[z]^m // Normal, m]; CoefficientList[gf[z], z]  (* Jean-François Alcover, Sep 23 2014, updated Jan 11 2018 *)
    b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *)
    b[n_,i_,t_,k_]:= b[n,i,t,k]= If[i<1,0,
      Sum[Binomial[b[i-1, i-1, k, k] + j-1, j]*
      b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    Join[{1},Table[b[n-1, n-1, m, m], {n, 1, 35}]] (* Robert A. Russell, Dec 27 2022 *)
  • PARI
    seq(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g,x,x^2)*g/2 + subst(g,x,x^3)/3) + O(x^n)); Vec(g)} \\ Andrew Howroyd, May 22 2018
    
  • SageMath
    def seq(n):
        B = PolynomialRing(QQ, 't', n+1);t = B.gens()
        R. = B[[]]
        T = sum([t[i] * z^i for i in range(1,n+1)]) + O(z^(n+1))
        lhs, rhs = T, 1 + z/6 * (T(z)^3 + 3*T(z)*T(z^2) + 2*T(z^3))
        I = B.ideal([lhs.coefficients()[i] - rhs.coefficients()[i] for i in range(n)])
        return [I.reduce(t[i]) for i in range(1,n+1)]
    seq(33) # Chris Grossack, Mar 31 2025

Formula

G.f. A(x) satisfies A(x) = 1 + (1/6)*x*(A(x)^3 + 3*A(x)*A(x^2) + 2*A(x^3)).
a(n) ~ c * d^n / n^(3/2), where d = 1/A261340 = 2.8154600331761507465266167782426995425365065396907..., c = 0.517875906458893536993162356992854345458168348098... . - Vaclav Kotesovec, Aug 15 2015

Extensions

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

A000602 Number of n-node unrooted quartic trees; number of n-carbon alkanes C(n)H(2n+2) ignoring stereoisomers.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 9, 18, 35, 75, 159, 355, 802, 1858, 4347, 10359, 24894, 60523, 148284, 366319, 910726, 2278658, 5731580, 14490245, 36797588, 93839412, 240215803, 617105614, 1590507121, 4111846763, 10660307791, 27711253769
Offset: 0

Views

Author

Keywords

Comments

Trees are unrooted, nodes are unlabeled. Every node has degree <= 4.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A000628 for the analogous sequence with stereoisomers counted.
In alkanes every carbon has valence exactly 4 and every hydrogen has valence exactly 1. But the trees considered here are just the carbon "skeletons" (with all the hydrogen atoms stripped off) so now each carbon bonds to 1 to 4 other carbons. The degree of each node is then <= 4.

Examples

			a(6)=5 because hexane has five isomers: n-hexane; 2-methylpentane; 3-methylpentane; 2,2-dimethylbutane; 2,3-dimethylbutane. - Michael Lugo (mtlugo(AT)mit.edu), Mar 15 2003 (corrected by _Andrey V. Kulsha_, Sep 22 2011)
		

References

  • Klemens Adam, Die Anzahlbestimmung der isomeren Alkane, MNU 1983, 36, 29 (in German).
  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
  • L. Bytautats, D. J. Klein, Alkane Isomer Combinatorics: Stereostructure enumeration and graph-invariant and molecular-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803, Table 1.
  • A. Cayley, Über die analytischen Figuren, welche in der Mathematik Baeume genannt werden..., Chem. Ber. 8 (1875), 1056-1059.
  • R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281.
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6.1 Chemical Isomers, p. 299.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.
  • Handbook of Combinatorics, North-Holland '95, p. 1963.
  • J. B. Hendrickson and C. A. Parks, "Generation and Enumeration of Carbon skeletons", J. Chem. Inf. Comput. Sci, vol. 31 (1991) pp. 101-107. See Table 2, column 2 on page 103.
  • M. D. Jackson and T. I. Bieber, Applications of degree distribution, 2: construction and enumeration of isomers in the alkane series, J. Chem. Info. and Computer Science, 33 (1993), 701-708.
  • J. Lederberg et al., Applications of artificial intelligence for chemical systems, I: The number of possible organic compounds. Acyclic structures containing C, H, O and N, J. Amer. Chem. Soc., 91 (1969), 2973-2097.
  • L. M. Masinter, Applications of artificial intelligence for chemical systems, XX, Exhaustive generation of cyclic and acyclic isomers, J. Amer. Chem. Soc., 96 (1974), 7702-7714.
  • D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920. [Gives a(60) correctly - compare first link below]
  • M. Petkovsek and T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs and others, Croatica Chem. Acta, 78 (2005), 563-567.
  • D. H. Rouvray, An introduction to the chemical applications of graph theory, Congress. Numerant., 55 (1986), 267-280. - N. J. A. Sloane, Apr 08 2012
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Marten J. ten Hoor, Formula for Success?, Education in Chemistry, 2005, 42(1), 10.
  • S. Wagner, Graph-theoretical enumeration and digital expansions: an analytic approach, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb., 2006.

Crossrefs

Column k=4 of A144528.
A000602 = A000022 + A000200 for n>0.

Programs

  • Maple
    A000602 := proc(n)
        if n=0 then
            1
        else
            A000022(n)+A000200(n);
        end if;
    end proc:
  • Mathematica
    n = 40; (* algorithm from Rains and Sloane *)
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    S4[f_,h_,x_] := f[h,x]^4/24 + f[h,x]^2 f[h,x^2]/4 + f[h,x] f[h,x^3]/3 + f[h,x^2]^2/8 + f[h,x^4]/4;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S3[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S4[T,h-1,z]z - S4[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
    b[n_, i_, t_, k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,
      k,k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *) n = 40;
    gf[x_] = 1 + Sum[b[j-1,j-1,m,m]x^j,{j,1,n}]; (* G.f. for A000598 *)
    ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}]],x] (* Robert A. Russell, Jan 19 2023 *)

Formula

a(n) = A010372(n) + A010373(n/2) for n even, a(n) = A010372(n) for n odd.
Also equals A000022 + A000200 (n>0), both of which have known generating functions. Also g.f. = A000678(x) - A000599(x) + A000598(x^2) = (x + x^2 + 2x^3 + ...) - (x^2 + x^3 + 3x^4 + ...) + (1 + x^2 + x^4 + ...) = 1 + x + x^2 + x^3 + 2x^4 + 3x^5 + ...
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S4,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^4 + 6*B(x)^2*B(x^2) + 8*B(x)*B(x^3) + 3*B(x^2)^2 + 6*B(x^4)) / 24, where B(x) = 1 + x * cycle_index(S3,B(x)) = 1 + x * (B(x)^3 + 3*B(x)*B(x^2) + 2*B(x^3)) / 6 is the generating function for A000598. - Robert A. Russell, Jan 16 2023

Extensions

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

A000625 Number of n-node steric rooted ternary trees; number of n carbon alkyl radicals C(n)H(2n+1) taking stereoisomers into account.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 28, 74, 199, 551, 1553, 4436, 12832, 37496, 110500, 328092, 980491, 2946889, 8901891, 27012286, 82300275, 251670563, 772160922, 2376294040, 7333282754, 22688455980, 70361242924, 218679264772, 681018679604, 2124842137550, 6641338630714, 20792003301836
Offset: 0

Views

Author

Keywords

Comments

Nodes are unlabeled, each node has out-degree <= 3.
Steric, or including stereoisomers, means that the children of a node are taken in a certain cyclic order. If the children are rotated it is still the same tree, but any other permutation yields a different tree. See A000598 for the analogous sequence with stereoisomers not counted.
Other descriptions of this sequence: steric planted trees with n nodes; total number of monosubstituted alkanes C(n)H(2n+1)-X with n carbon atoms.
Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).
Then Ps (and As) = A000620, Pn (and An, Sn) = A000621, Ss = A000622, Ts = A000623, Tn = A000624, T = this sequence. Recurrences generating these sequences are given in the Maple program in A000620.

References

  • J. K. Percus, Combinatorial Methods, Lecture Notes, 1967-1968, Courant Institute, New York University, 212pp. See pp. 64-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A := 1; f := proc(n) global A; coeff(series( 1+(1/3)*x*(A^3+2*subs(x=x^3,A)), x, n+1), x, n); end; for n from 1 to 50 do A := series(A+f(n)*x^n,x,n +1); od: A;
    A000625 := proc(n)
        local j,i,a ;
        option remember;
        if n <= 1 then
            1 ;
        else
            a :=0 ;
            for j from 1 to n-1 do
                a := a+ j*procname(j)*add(procname(i)*procname(n-j-i-1),i=0..n-j-1) ;
            end do:
            if modp(n-1,3) = 0 then
                a := a+2*(n-1)*procname((n-1)/3)/3 ;
            end if;
            a/ (n-1) ;
        end if;
    end proc:
    seq(A000625(n),n=0..30) ;
  • Mathematica
    m = 31; c[0] = 1; gf[x_] = Sum[c[k] x^k, {k, 0, m}]; cc = Array[c, m]; coes = CoefficientList[ Series[gf[x] - 1 - (x*(gf[x]^3 + 2*gf[x^3])/3), {x, 0, m}], x] // Rest; Prepend[cc /. Solve[ Thread[ coes == 0], cc][[1]], 1]
    (* Jean-François Alcover, Jun 24 2011 *)
    a[0] = a[1] = 1; a[n_Integer] := a[n] = (Sum[j*a[j]*Sum[a[i]*a[n-i-j-1], {i, 0, n-j-1}], {j, 1, n-1}] + (2/3)*(n-1)*a[(n-1)/3])/(n-1); a[] = 0; Table[a[n], {n, 0, 31}] (* _Jean-François Alcover, Apr 21 2016, after Emeric Deutsch *)
    terms = 32; A[] = 0; Do[A[x] = Normal[1 + x*(A[x]^3 + 2*A[x^3])/3 + O[x]^terms], terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Apr 22 2016, updated Jan 11 2018 *)
  • PARI
    a(n) = if(n, my(v=vector(n+1)); v[1]=1; v[2]=1; for(k=1, n-1, v[k+2] = sum(j=1, k, j*v[j+1]*(sum(i=0, k-j, v[i+1]*v[k-j-i+1])))/k + (2/3)*if(k%3, 0, v[k/3+1])); v[n+1], 1) \\ Jianing Song, Feb 17 2019

Formula

G.f. A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 28*x^6 + ... satisfies A(x) = 1 + x*(A(x)^3 + 2*A(x^3))/3.
a(0) = a(1) = 1; a(n+1) = 2*a(n/3)/3 + (Sum_{j=1..n} j*a(j)*(Sum_{i=1..n-j} a(i)*a(n-j-i)))/n for n >= 1, where a(k) = 0 if k not an integer (essentially eq (4) in the Robinson et al. paper). - Emeric Deutsch, May 16 2004
a(n) ~ c * b^n / n^(3/2), where b = 3.287112055584474991259... (see A239803), c = 0.346304267394183622435... (see A239810). - Vaclav Kotesovec, Mar 27 2014

Extensions

Additional comments from Bruce Corrigan, Nov 04 2002

A086194 Number of unrooted steric quartic trees with n (unlabeled) nodes and possessing a centroid; number of n carbon alkanes C(n)H(2n +2) with a centroid when stereoisomers are regarded as different.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 11, 9, 55, 70, 345, 494, 2412, 3788, 18127, 30799, 143255, 256353, 1173770, 2190163, 9892302, 19130814, 85289390, 169923748, 749329719, 1531701274, 6688893605, 13984116304, 60526543480, 129073842978
Offset: 1

Views

Author

Steve Strand (snstrand(AT)comcast.net), Aug 28 2003

Keywords

Comments

The degree of each node is <= 4.
A centroid is a node with less than n/2 nodes in each of the incident subtrees, where n is the number of nodes in the tree. If a centroid exists it is unique.
Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A010372 for the analogous sequence when stereoisomers are not counted as different.

Crossrefs

For even n A000628(n) = a(n) + A086200(n/2), for odd n A000628(n) = a(n), since every tree has either a centroid or a bicentroid but not both.

Programs

  • Mathematica
    c[0] = 1; f[x_, m_] := Sum[c[k] x^k, {k, 0, m}]; coes[m_] := CoefficientList[Series[f[x, m] - 1 - (x*(f[x, m]^3 + 2*f[x^3, m])/3), {x, 0, m}], x] // Rest; r[x_, m_] := r[x, m] = (f[x, m] /. Solve[Thread[coes[m] == 0]] // First); b[m_] := CoefficientList[(1/12)*(r[x, m]^4 + 3*r[x^2, m]^2 + 8*r[x, m]*r[x^3, m]), x]; a[1]=1; a[2]=0; a[n_] := b[Quotient[n-1, 2]][[n]]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 30}] (* Jean-François Alcover, Dec 29 2014 *)

Formula

Let r(x) = g.f. A(x) for A000625 truncated after the x^n term (x^0 through x^n terms only). Then coefficients of x^(2n) and x^(2n+1) in [r(x)^4 + 8 r(x^3) r(x) + 3 r(x^2)^2]/12 are terms 2n+1 and 2n+2 in current sequence..

A086200 Number of unrooted steric quartic trees with 2n (unlabeled) nodes and possessing a bicentroid; number of 2n-carbon alkanes C(2n)H(4n +2) with a bicentroid when stereoisomers are regarded as different.

Original entry on oeis.org

1, 3, 15, 66, 406, 2775, 19900, 152076, 1206681, 9841266, 82336528, 702993756, 6105180250, 53822344278, 480681790786, 4342078862605, 39621836138886, 364831810979041, 3386667673687950, 31669036266203766
Offset: 1

Views

Author

Steve Strand (snstrand(AT)comcast.net), Aug 28 2003

Keywords

Comments

The degree of each node is <= 4.
A bicentroid is an edge which connects two subtrees of exactly m/2 nodes, where m is the number of nodes in the tree. If a bicentroid exists it is unique. Clearly trees with an odd number of nodes cannot have a bicentroid.
Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A010373 for the analogous sequence when stereoisomers are not counted as different.

Crossrefs

For even n A000628(n) = A086194(n) + a(n/2), for odd n A000628(n) = A086194(n), since every tree has either a centroid or a bicentroid but not both.

Formula

G.f.: replace each term x in g.f. for A000625 by x(x+1)/2. Interpretation: ways to pick 2 specific radicals (order not important) from all n carbon radicals is number of 2n carbon bicentered alkanes (join the two radicals with an edge).

A000626 Number of stereoisomeric paraffins with n carbon atoms.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 11, 35, 101, 290, 804, 2256, 6296, 17689, 49952, 142016, 406330, 1170272, 3390932, 9882412, 28955403, 85261439, 252213192, 749250700, 2234562027, 6688670232, 20088920730, 60525912003, 182895125096, 554186425193, 1683554604984, 5126814324715, 15647846830627, 47862034920652, 146691540312878
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Reference gives recurrence.

Extensions

Corrected and extended by Tom Zeller (tzellera(AT)aim.com), Jun 01 2006

A000627 Number of non-stereoisomeric paraffins with n carbon atoms.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 13, 20, 35, 55, 96, 156, 267, 438, 747, 1239, 2099, 3498, 5912, 9890, 16677, 27951, 47084, 79019, 133003, 223373, 375824, 631477, 1062160, 1785159, 3002227, 5046641, 8486453, 14266795, 23989770, 40332184, 67816640, 114018876, 191713441, 322330987, 541966582
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Reference gives recurrence.

Extensions

Corrected and extended by Tom Zeller (tzellera(AT)aim.com), Jun 01 2006

A067608 Number of structural alkanes with combinatorial diameter n.

Original entry on oeis.org

1, 1, 3, 6, 53, 496, 81096, 35292601, 211275732504203, 5013078952131335869356, 4188494841905497365271738826910705731652978, 13998172580873019733546655911268420464183123192214609601699428961
Offset: 1

Views

Author

Peter Freyd (pjf(AT)saul.cis.upenn.edu), Feb 02 2002

Keywords

Examples

			There are 53 such alkanes where the longest chain of carbon atoms is of length 5.
		

References

  • R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, April 1989, pp. 278-281.

Crossrefs

Programs

  • Mathematica
    rid[0]=1; rid[r_] := rid[r]=1+Binomial[rid[r-1]+2, 3]; rd[r_] := rid[r]-rid[r-1]; td[1]=1; td[r_] := If[EvenQ[r], Binomial[rd[r/2]+1, 2], Binomial[rid[(r-1)/2]+3, 4]-rd[(r-1)/2]Binomial[rid[(r-3)/2]+2, 3]-Binomial[rid[(r-3)/2]+3, 4]]; td/@Range[12]

Extensions

Edited by Dean Hickerson, Feb 11 2002

A067609 Number of stereo alkanes with combinatorial diameter n.

Original entry on oeis.org

1, 1, 3, 6, 58, 861, 373141, 525901096, 92709102076260838, 65190291939775823483614581, 1416591403847441323962646602694082865630539057192433
Offset: 1

Views

Author

Peter Freyd (pjf(AT)saul.cis.upenn.edu), Feb 02 2002

Keywords

References

  • R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, April 1989, pp. 278-281.

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := Binomial[n+k-1, k]+Binomial[n, k]; rid[0]=1; rid[r_] := rid[r]=1+f[rid[r-1], 3]; rd[r_] := rid[r]-rid[r-1]; td[1]=1; td[r_] := If[EvenQ[r], Binomial[rd[r/2]+1, 2], f[rid[(r-1)/2], 4]-rd[(r-1)/2]f[rid[(r-3)/2], 3]-f[rid[(r-3)/2], 4]]; td/@Range[12]

Extensions

Edited by Dean Hickerson, Feb 11 2002

A067610 Number of stereo alkanes not containing a certain forbidden substructure with combinatorial diameter n.

Original entry on oeis.org

1, 1, 3, 6, 57, 838, 319924, 35630889
Offset: 1

Views

Author

Peter Freyd (pjf(AT)saul.cis.upenn.edu), Feb 02 2002

Keywords

Crossrefs

Extensions

Edited by Dean Hickerson, Feb 11 2002
Showing 1-10 of 14 results. Next