cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000642 a(1)=0; for n>1, a(n) = number of isomeric hydrocarbons of the acetylene series with carbon content n.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 14, 32, 72, 171, 405, 989, 2426, 6045, 15167, 38422, 97925, 251275, 648061, 1679869, 4372872, 11428365, 29972078, 78859809, 208094977, 550603722, 1460457242, 3882682803, 10344102122, 27612603765, 73844151259, 197818389539
Offset: 1

Views

Author

Keywords

Comments

The former definition was "Number of alkyl derivatives of acetylene X^{II} C_n H_{2n+2} with n carbon atoms" with offset 0.
a(n+1) is the number of rooted trees with n nodes and out-degree <= 2 on the root and out-degree <= 3 on all other nodes. See illustration of initial terms. - Washington Bomfim, Nov 28 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    terms = 32; B[] = 0; Do[B[x] = 1 + (1/6)*x*(B[x]^3 + 3*B[x]*B[x^2] + 2*B[x^3]) + O[x]^terms // Normal, terms];
    A[x_] = (1/2)*x*(B[x^2] + B[x]^2) + O[x]^terms;
    CoefficientList[A[x], x] (* Jean-François Alcover, Jun 28 2012, updated Jan 10 2018 *)
  • PARI
    \\ here G(n) is A000598 as g.f.
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    seq(n)={my(g=G(n)); Vec(subst(g,x,x^2) + g^2, -(n+1))/2} \\ Andrew Howroyd, Nov 28 2020

Formula

G.f.: A(x)=(1/2)*x*(B(x^2)+B(x)^2), where B(x) = g.f. for A000598.
a(n) ~ c * d^n / n^(3/2), where d = 1/A261340 = 2.815460033176... and c = 0.13833565403175156418512996853... - Vaclav Kotesovec, Feb 11 2019

Extensions

I changed the definition and offset so as to agree with Coffman et al. (1933). - N. J. A. Sloane, Jan 13 2019