A036671 Number of isomers C_n H_{2n} without double bonds.
0, 0, 1, 2, 5, 12, 29, 73, 185, 475, 1231, 3232, 8506, 22565, 60077, 160629, 430724, 1158502, 3122949, 8437289, 22836877, 61918923, 168139339, 457225555, 1244935251, 3393754661, 9261681937, 25301337669, 69184724389, 189349490641
Offset: 1
References
- Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991). See page 335 Table 1.
- J. B. Hendrikson and C. A. Parks, "Generation and Enumeration of Carbon skeletons", J. Chem. Inf. Comput. Sci, vol. 31 (1991) pp. 101-107. See Table 2, column 3 on page 103.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Michael A. Kappler, GENSMI: Exhaustive Enumeration of Simple Graphs.
- G. Polya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937), 145-254.
Programs
-
PARI
\\ here G is A000598 as series G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g,x,x^2)*g/2 + subst(g,x,x^3)/3) + O(x^n)); g} seq(n)={my(t=G(n-2)); t=x*(t^2+subst(t,x,x^2))/2; my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2, -n)} \\ Andrew Howroyd, May 22 2018
Formula
Polya reference gives an explicit g.f.; so does Parks et al.
Extensions
More terms from Vladeta Jovovic, Aug 19 2001
Comments