cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A036671 Number of isomers C_n H_{2n} without double bonds.

Original entry on oeis.org

0, 0, 1, 2, 5, 12, 29, 73, 185, 475, 1231, 3232, 8506, 22565, 60077, 160629, 430724, 1158502, 3122949, 8437289, 22836877, 61918923, 168139339, 457225555, 1244935251, 3393754661, 9261681937, 25301337669, 69184724389, 189349490641
Offset: 1

Views

Author

Keywords

Comments

Equivalently, the number of simple unicyclic graphs on n unlabeled vertices with all degrees at most 4. See table 1 in Michael A. Kappler reference. - Jonathan Vos Post, Dec 07 2005, Andrew Howroyd, May 22 2018

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991). See page 335 Table 1.
  • J. B. Hendrikson and C. A. Parks, "Generation and Enumeration of Carbon skeletons", J. Chem. Inf. Comput. Sci, vol. 31 (1991) pp. 101-107. See Table 2, column 3 on page 103.

Crossrefs

Programs

  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g,x,x^2)*g/2 + subst(g,x,x^3)/3) + O(x^n)); g}
    seq(n)={my(t=G(n-2)); t=x*(t^2+subst(t,x,x^2))/2; my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2, -n)} \\ Andrew Howroyd, May 22 2018

Formula

Polya reference gives an explicit g.f.; so does Parks et al.

Extensions

More terms from Vladeta Jovovic, Aug 19 2001

A002094 Number of unlabeled connected loop-less graphs on n nodes containing exactly one cycle (of length at least 2) and with all nodes of degree <= 4.

Original entry on oeis.org

0, 1, 2, 5, 10, 25, 56, 139, 338, 852, 2145, 5513, 14196, 36962, 96641, 254279, 671640, 1781840, 4742295, 12662282, 33898923, 90981264, 244720490, 659591378, 1781048728, 4817420360, 13050525328, 35405239155, 96180222540, 261603173201, 712364210543
Offset: 1

Views

Author

Keywords

Comments

A pair of parallel edges is permitted and is regarded as a cycle of length 2.
The original definition in A Handbook of Integer Sequences (1973) based on Schiff (1875) was simply "Alcohols". - N. J. A. Sloane, Mar 22 2018
Schiff used an now outdated terminology and did not use the term "alcohols", but in German "zweiwerthige Kohlenwasserstoffe C_{n}H_{2n} ..." and later "... deren je zwei verfuegbare Affinitaeten ... durch Alkoholradikale befriedigt sind.", translated "bivalent hydrocarbons ... whose free valences ... are covered by alcohol radicals". At that time the meaning of "alcohol radical" was different from modern terminology, now meaning an -OH group, but in Schiff's terminology another C_{x}H{y} hydrocarbon group was meant. The organic compounds that are described by the graphs of this sequence in modern chemical terminology are the acyclic alkenes, with exactly one double carbon-to-carbon bond, and the monocyclic cycloalkanes (see Wikipedia links). - Hugo Pfoertner, Mar 29 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000294, A000598, A000602, A000625, A000642, A001429 (unbound degrees), A068051.

Programs

  • Maple
    # cycle index of cyclic group C_n
    cycC_n := proc(n::integer,a)
        local d ;
        add(numtheory[phi](d)*a[d]^(n/d),d=numtheory[divisors](n)) ;
        %/n ;
    end proc:
    # cycle index of dihedral group
    cyD_n := proc(n::integer,a)
        cycC_n(n,a)/2 ;
        if type(n,'odd') then
            %+ a[1]*a[2]^((n-1)/2)/2 ;
        else
            %+ ( a[1]^2*a[2]^((n-2)/2) +a[2]^(n/2) )/4 ;
        end if;
    end proc:
    a000642 := [
        1, 1, 2, 3, 7, 14, 32, 72, 171, 405, 989, 2426, 6045, 15167, 38422, 97925,
        251275, 648061, 1679869, 4372872, 11428365, 29972078, 78859809, 208094977,
        550603722, 1460457242, 3882682803, 10344102122, 27612603765, 73844151259,
        197818389539, 530775701520, 1426284383289] ;
    g := [add(a000642[i]*x^i,i=1..nops(a000642)) ];
    for i from 2 to nops(a000642) do
        g := [op(g), subs(x=x^i,g[1]) ] ;
    end do:
    Nmax := nops(a000642) :
    G := 0 ;
    for c from 2 to Nmax do
        f := cyD_n(c,g) ;
        G := G+ taylor(f,x=0,Nmax) ;
    end do:
    taylor(G,x=0,Nmax) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Mar 17 2018
  • Mathematica
    terms = 31;
    cycC[n_, a_] := Sum[EulerPhi[d] a[[d]]^(n/d), {d, Divisors[n]}]/n;
    cyD[n_, a_] := Module[{cc}, cc = (1/2)cycC[n, a]; If[OddQ[n], (1/2)a[[1]]* a[[2]]^((n-1)/2)+cc, (1/4)(a[[1]]^2 a[[2]]^((n-2)/2) + a[[2]]^(n/2)) + cc]];
    B[] = 0; Do[B[x] = Normal[(1/6) x (2 B[x^3] + 3 B[x^2] B[x] + B[x]^3) + O[x]^terms+1], terms];
    A[x_] = (1/2) x (B[x^2] + B[x]^2) + O[x]^(terms+2);
    a000642 = Rest[CoefficientList[A[x], x]];
    g = {Sum[x^i a000642[[i]], {i, 1, terms+1}]};
    For[i = 2, i <= Length[a000642], i++, g = Flatten[Append[g, g[[1]] /. x -> x^i]]];
    For[G = 0; c = 2, c < terms+1, c++, f = cyD[c, g]; G = Series[f, {x, 0, terms+1}] + G];
    Most[Rest[CoefficientList[G, x]]] (* Jean-François Alcover, Mar 26 2020, after R. J. Mathar *)

Formula

Let A(x) denote the generating function for A000598 (Number of rooted ternary trees with n nodes), i.e., A(x) = 1+(1/6)*x*(A(x)^3+3*A(x)*A(x^2)+2*A(x^3)), and set B(x)=(A(x)^2+A(x^2))/2. With D_k(x) being the cycle polynomial of the regular k-gon for k>=2, the final generating function is then given by Sum_{k>=2} x^k*D_k(B(x)), which can be evaluated very quickly. - Sascha Kurz, Mar 18 2018

Extensions

Better definition from R. J. Mathar; terms beyond 852 from R. J. Mathar and Sean A. Irvine, Mar 17 2018

A000631 Number of ethylene derivatives with n carbon atoms.

Original entry on oeis.org

1, 1, 3, 5, 13, 27, 66, 153, 377, 914, 2281, 5690, 14397, 36564, 93650, 240916, 623338, 1619346, 4224993, 11062046, 29062341, 76581151, 202365823, 536113477, 1423665699, 3788843391, 10103901486, 26995498151, 72253682560, 193706542776
Offset: 2

Views

Author

Keywords

Comments

Number of structural isomers of alkenes C_n H_{2n} with n carbon atoms.
Number of unicyclic graphs of n nodes where a double-edge replaces the cycle, [A217781], end-points of the double-edge of out-degrees <= 2, other nodes having out-degrees <= 3.
Number of rooted trees on n+1 nodes where the root has degree 2, the 2 children of the root have out-degrees <= 2, and the other nodes have out-degrees <= 3.
See illustration of initial terms. - Washington Bomfim, Nov 30 2020

References

  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000642, A000598, A027852 (out-degrees of nodes not limited).

Programs

  • PARI
    \\ Here G(n) is A000598 as g.f., h is A000642.
    seq(n)={my(g=G(n), h=(subst(g, x, x^2) + g^2)/2); Vec(subst(h, x, x^2) + h^2)/2} \\ Andrew Howroyd, Dec 01 2020

Formula

a(n) = b(1)b(n-1) + b(2)b(n-2) + b(3)b(n-3) + ... + b(n/2)(b(n/2) + 1)/2 when n is even or b(1)b(n-1) + b(2)b(n-2) + b(3)b(n-3) + ... + b((n-1)/2)b((n + 1)/2) when n is odd, where b(n) = A000642(n). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
a(n) = Sum_{k=1..(n-1)/2}( f(k) * f(n-k) ) + [n mod 2 = 0] * ( f(n/2)^2 + f(n/2) ) / 2 where f(n) = A000642(n+1). - Washington Bomfim, Nov 29 2020
G.f.: (g(x^2) + g(x)^2)/2 where x*g(x) is the g.f. of A000642. - Andrew Howroyd, Dec 01 2020

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008

A261340 Decimal expansion of the radius of convergence of the generating function of A000598, the number of rooted ternary trees of n vertices.

Original entry on oeis.org

3, 5, 5, 1, 8, 1, 7, 4, 2, 3, 1, 4, 3, 7, 7, 3, 9, 2, 8, 8, 2, 2, 4, 4, 4, 7, 3, 6, 4, 7, 6, 3, 2, 6, 3, 6, 7, 0, 8, 7, 4, 6, 9, 5, 4, 1, 7, 5, 3, 2, 2, 1, 3, 4, 2, 3, 8, 1, 2, 9, 4, 9, 9, 7, 1, 2, 8, 0, 0, 1, 8, 0, 5, 7, 5, 5, 5, 7, 8, 2, 8, 8, 6, 7, 9, 8, 1, 3, 8, 1, 0, 8, 2, 4, 1, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Aug 15 2015

Keywords

Examples

			0.35518174231437739288224447364763263670874695417532...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 298.

Crossrefs

Programs

  • Mathematica
    digits = 97; m = 2 digits + 10; For[gf = 0; i = 0, i <= m, i++, gf = Series[1 + x*(gf^3/6 + (gf /. x -> x^2)*gf/2 + (gf /. x -> x^3)/3), {x, 0, m + 1}] // Normal];
    g[r_] := Module[{r2, r3, X, ym}, r2 = gf /. x -> r^2; r3 = gf /. x -> r^3; X[y_] = (y - 1)/(y^3/6 + r2*y/2 + r3/3); ym = y /. FindRoot[X'[y] == 0, {y, 2}, WorkingPrecision -> digits + 5]; X[ym]]; rho = FixedPoint[g, 1/3, SameTest -> (Abs[#1 - #2] < 10^-digits &)]; RealDigits[rho, 10, digits] // First

Extensions

More digits from Vaclav Kotesovec, Aug 15 2015
More digits and Mma code updated by Jean-François Alcover, Apr 18 2016

A000635 Number of paraffins C_n H_{2n} X Y with n carbon atoms.

Original entry on oeis.org

0, 1, 2, 5, 12, 31, 80, 210, 555, 1479, 3959, 10652, 28760, 77910, 211624, 576221, 1572210, 4297733, 11767328, 32266801, 88594626, 243544919, 670228623, 1846283937, 5090605118, 14047668068, 38794922293, 107215238057, 296501478704
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    terms = 29; B[] = 0; Do[B[x] = 1 + (1/6)*x*(B[x]^3 + 3*B[x]*B[x^2] + 2*B[x^3]) + O[x]^terms // Normal, terms];
    B642[x_] = (1/2)*x*(B[x^2] + B[x]^2) + O[x]^terms;
    A[x_] = B642[x]/(1 - B642[x]);
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 21 2011, updated Jan 10 2018 *)

Formula

G.f.: A(x) = B(x)/(1-B(x)), B(x) = g.f. for A000642.

A000636 Number of paraffins C_n H_{2n} X_2 with n carbon atoms.

Original entry on oeis.org

1, 2, 4, 9, 21, 52, 129, 332, 859, 2261, 5983, 15976, 42836, 115469, 312246, 847241, 2304522, 6283327, 17164401, 46972357, 128741107, 353345434, 970999198, 2671347292, 7356752678, 20279171785, 55948407837, 154479213626, 426845422807, 1180229767202
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

G.f.: (1/2) * (1/(1-x*R(x)) + (1+x*R(x)) / (1-x^2*R(x^2))) where R(x) is the g.f. for A000642 [From Polya paper]. - Sean A. Irvine, Oct 04 2016

Extensions

More terms from Sean A. Irvine, Oct 04 2016

A000640 Number of paraffins C_n H_{2n-1} XYZ with n carbon atoms.

Original entry on oeis.org

0, 1, 4, 13, 42, 131, 402, 1218, 3657, 10899, 32298, 95257, 279844, 819390, 2392392, 6967956, 20250974, 58744089, 170118980, 491913999, 1420493862, 4096940530, 11803172152, 33970257473, 97678027311, 280624328431, 805587723862
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    # The following Maple commands are taken from the Chyzak web site:
    with(combstruct);
    gramm_Alkyl:=Alkyl=Prod(Carbon,Set(Alkyl,card<=3)),Carbon=Atom:
    specs_Alkyl:=[Alkyl,{gramm_Alkyl},unlabeled]:
    gramm_S1_Alkyl:=S1_Alkyl[X]=Union(Prod(Carbon,S1_Alkyl[X],Set(Alkyl,card<=2)),Prod(Prod(Carbon,X),Set(Alkyl,card<=2))),X=Epsilon:
    specs_S1_Alkyl:=[S1_Alkyl[X],{gramm_S1_Alkyl,gramm_Alkyl},unlabeled]:
    gramm_S2_Alkyl:=S2_Alkyl[X,Y]=Union(Prod(Carbon,S2_Alkyl[X,Y], Set(Alkyl,card<=2)),Prod(Carbon,Union(S1_Alkyl[X],X),Union(S1_Alkyl[Y],Y),Set(Alkyl,card<=1))):
    specs_S2_Alkyl:=[S2_Alkyl[X,Y],{gramm_S2_Alkyl,gramm_S1_Alkyl,op(subs(X=Y,[gramm_S1_Alkyl])),gramm_Alkyl},unlabeled]:
    [seq(count(specs_S2_Alkyl,size=i),i=0..50)];
  • Mathematica
    terms = 27; (* B,B2 = g.f. for A000598,A000642 resp. *) B[] = 0; Do[B[x] = 1 + (1/6)*x*(B[x]^3 + 3*B[x]*B[x^2] + 2*B[x^3]) + O[x]^terms // Normal, terms];
    B2[x_] = (1/2)*x*(B[x^2] + B[x]^2) + O[x]^terms;
    A[x_] = x*B[x]/(1 - B2[x])^3 + O[x]^terms;
    CoefficientList[A[x], x] (* Jean-François Alcover, Jan 10 2018 *)

Formula

G.f.: A(x) = x*A000598(x)/(1-A000642(x))^3.

A000641 Number of paraffins C_n H_{2n-1} X_3 with n carbon atoms.

Original entry on oeis.org

0, 1, 2, 5, 14, 39, 109, 312, 890, 2552, 7325, 21047, 60465, 173750, 499068, 1433071, 4113105, 11799780, 33834367, 96968462, 277771344, 795310628, 2276055442, 6510786627, 18616389094, 53207964655, 152014267327, 434136228215
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

G.f.: A(x) = ((x*r)/6)*( 1/(1-x*R)^3 + 3/((1-x*R)*(1-x^2*R2)) + 2/(1-x^3*R3)); r = A000598(x), R=A000642(x)/x, Ri=R(x^i).

A022014 Tri-substituted alkanes of form C_n H_{2n-1} X_2 Y, or equivalently bi-substituted alkyls of form -C_n H_{2n-1} X_2 (n=1: CHXXY; n=2: CXXY-CHHH CXYH-CXHH CXXH-CYHH).

Original entry on oeis.org

0, 1, 3, 9, 27, 81, 240, 711, 2094, 6152, 18012, 52613, 153297, 445772, 1293780, 3748820, 10845935, 31336532, 90426198, 260644262, 750502831, 2158961013, 6205225334, 17820505454, 51139664497, 146654181925, 420291420558
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

G.f.: (1/2) * (x*r(x)/(1-x*R(x)) * (1/(1-x*R(x))^2 + 1/(1-x^2*R(x^2))) where r(x) is the g.f. for A000598 and R(x) is the g.f. for A000642 [from Polya, p. 440]. - Sean A. Irvine, May 13 2019

A000634 Number of glycols with n carbon atoms.

Original entry on oeis.org

1, 2, 6, 14, 38, 97, 260, 688, 1856, 4994, 13550, 36791, 100302, 273824, 749316, 2053247, 5635266, 15484532, 42599485, 117312742, 323373356, 892139389, 2463252315, 6806148956, 18818714543, 52065725034, 144135111504, 399232819042, 1106385615943
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000636(n) - A000642(n). - Sean A. Irvine, Nov 18 2016

Extensions

More terms from Sean A. Irvine, Nov 18 2016
Showing 1-10 of 11 results. Next